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Abstract

Musculoskeletal simulations of human movement are often used to estimate soft tissue and
joint contact loads. However, traditional modeling approaches use a serial approach that does not
account for knee joint laxity when simulating movement. In the traditional approach, a multibody
dynamics model is used to calculate muscle forces needed to produce skeletal movement. Then, these
muscle forces are applied as boundary conditions to a detailed joint model to solve for soft tissue
loading. However, the dynamic musculoskeletal models often assume a one degree of freedom
kinematic knee joint that behaves independent of load. The overall goal of this work was to investigate
the coupling of multibody dynamics and soft tissue mechanics. This goal was achieved by completing the
following three objectives.

Objective 1: Empirically assess how in vivo knee kinematics vary with quadriceps loading
Rationale: Musculoskeletal models often assume that joints are simply kinematic constraints. However
in reality, joint kinematics vary with loading, which can influence the line of action and moment arm of a
muscle about the knee. Hypothesis: The in vivo tibiofemoral finite helical axis and patellar tendon
moment arm will exhibit load-dependent behavior. Methods: Dynamic MRI imaging techniques were
used to measure three-dimensional knee kinematics under controlled loading conditions. Eight subjects
performed cyclic knee flexion/extension tasks against inertial and elastic loads, which induced
guadriceps activity with knee flexion and extension, respectively. For both loading conditions, the
tibiofemoral finite helical axis was calculated as well as the patellar tendon’s moment arm with respect
to this axis. Results: Quadriceps loading in a flexed knee induced a significant inferior shift of the finite
helical axis, which diminished the patellar tendon moment arm. Since the quadriceps load induced
during flexion in the experiment was similar to that seen during the load-acceptance phase of gait, this

load-dependence may be important to consider in gait simulations. Relevance: Since the quadriceps



load induced during flexion in the experiment was similar to that seen during the load-acceptance phase
of gait, this load-dependence may be important to consider in gait simulations.

Objective 2: Investigate whether a muscle-actuated computational knee model that includes
ligament compliance and tibiofemoral contact could emulate in vivo kinematic patterns. Rationale: Since
the knee exhibits load-dependent behavior in vivo, a framework should be developed to couple
multibody dynamics and soft tissue loads. Hypothesis: Similar to what was seen in vivo, the finite helical
axis will shift inferiorly when the quadriceps are loaded in flexion, thus diminishing the moment arm of
the patellar tendon. Methods: We started with a generic lower extremity model with 44 muscles, 6
joints, and 18 degrees of freedom. The kinematic knee joint was replaced by a six degree of freedom
tibiofemoral joint. This knee model included 19 ligaments represented by non-linear springs as well as
an elastic foundation model to calculate tibiofemoral cartilage contact loads. The one degree of freedom
patellofemoral joint was constrained to move within a path relative to the femoral groove with patellar
tendon and quadriceps forces acting on either end of the patella. A co-simulation framework was
implemented in which neuromusculokeletal dynamics and knee mechanics were simultaneously solved
using a computed muscle control algorithm. Results: The co-simulation framework predicted similar
load-dependent variations in knee kinematics as seen in vivo, specifically that quadriceps loading at
flexed angles induces anterior tibial translation and superior patellar translation. The model predicted
internal rotation with quadriceps loading, which was not seen experimentally. However, the model
agrees with other ex vivo studies on quadriceps function. Relevance: These results demonstrate the
relevance and potential for co-simulating musculoskeletal dynamics and soft tissue loads.

Objective 3: Use the co-simulation framework to investigate the influence of knee laxity on
tibiofemoral kinematics and kinetics during walking. Rationale: The load-dependent behavior of the
knee is evident in intact healthy knees and may even more important to consider in pathological cases

where injury can alter joint laxity and surgery can alter the properties of both reconstructed and donor



tissues. These effects are particularly relevant when using models to characterize cartilage and muscle
loads. Hypothesis: When the quadriceps are maximally loaded during stance, the models with laxity will
exhibit an anteriorly translated and internally rotated tibia in comparison to a kinematic joint
assumption. These will in turn affect the moment arm of the patellar tendon and thus predictions of
guadriceps loading. Methods: Using the developed co-simulation technique from objective 2, muscle
activation patterns were computed that drove a lower extremity musculoskeletal model to track normal
hip, knee, and ankle flexion patterns during gait. Results: During the load acceptance phase of gait, the
models with laxity predicted increased anterior tibia translation and internal tibia rotation due to
quadriceps loading. These variations in tibiofemoral kinematics resulted in a more inferior finite helical
axis, a diminished patellar tendon moment arm, and increased quadriceps loading, relative to what
would be computed using a traditional kinematic knee model. Simulating gait with an ACL-deficient knee
shifted tibia plateau cartilage contact posteriorly and laterally. Relevance: Shifts in cartilage loading after
surgery are thought to contribute to early onset knee osteoarthritis.

We have shown that load-dependent variations in secondary joint kinematics affect muscle
actions by using a modified computed muscle control algorithm to co-simulate soft tissue loads and
musculoskeletal dynamics during gait. This is the first study to predict changes in cartilage contact
loading between a healthy and ACL-deficient knee. This framework could be further used to explore

surgical and rehabilitative strategies to restore normal knee mechanics after injury and disease.
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Chapter 1: Introduction

The knee is an important load-bearing joint, unique from other joints in that there are three
compartments (two tibiofemoral and one patellofemoral) with menisci to distribute loads (McDermott
and Amis, 2006) and soft tissues as the major stabilizing factors, as opposed to articular geometry
(Elsevier, 2008). Causing over 55 million doctor visits a year, the knee is the most frequently injured joint
(Dunkin, 2009). Osteoarthritis, the most common form of arthritis, occurs more in the knee than any
other joint (Oliveria, et al., 2005). Therefore, knee models are built to study normal joint function,
prevention of problems, and treatments.

These models range in complexity from a hinge joint (Asano, et al., 2005; Reinbolt, et al., 2005)
to a complex continuum representation using finite element analysis (Dhaher, et al., 2010) and have
been used to estimate immeasurable forces (i.e. muscle forces and soft tissue loads) and to perform
‘what-if’ studies. For example, (van der Krogt, et al., 2012) used simplified joint models to study how
muscle weakness affected normal walking. (Shelburne, et al., 2005a) used a discrete element model of
the knee, a model that includes cartilage loads and spring representations for ligaments, to predict
hamstring and quadriceps forces that could be used to restore normal joint function in a knee without
an anterior cruciate ligament. (Dhaher and Kahn, 2002) used a finite element model to determine how
qguadriceps forces affect patellofemoral cartilage loads, often the cause of patellofemoral pain.

However, a serial approach is typically used to estimate these internal knee loads (Fernandez
and Pandy, 2006). First, muscle forces are calculated using a simplified model of knee (e.g. hinge joint),
where the joint is assumed to behave independently of load (a.k.a. a kinematic joint) (Anderson and
Pandy, 1999; Anderson and Pandy, 2001; Reinbolt, et al., 2005). These muscle forces are then used as

boundary conditions to a more detailed joint model to calculate soft tissue loading. However, knee



behavior is load-dependent (Dyrby and Andriacchi, 2004; Tsaopoulos, et al., 2007; Westphal and Thelen,
2009), and it is unclear how important it is to account for this when muscle forces are calculated.

Rather than using a serial approach, others have simultaneously predicted muscle forces and
soft tissue loads, coupling musculoskeletal dynamics and soft tissue mechanics. (Halloran, et al., 2009)
coupled a musculoskeletal model of the lower extremity with a finite element model of the foot to
determine neuromuscular coordination patterns to optimize jumping. However, this was constrained to
the sagittal plane. (Lin, et al., 2010) simultaneously predicted muscle forces and contact forces at the
knee during gait but did not consider ligament forces. Both of these techniques used surrogate models
for the soft tissue mechanics. Surrogate models are computationally in-expensive when generated but
need to be re-generated if model parameters are changed (e.g. articular geometry), thus limiting its
flexibility. Therefore, a co-simulation framework needs to be developed that is 3D, does not use a
surrogate model, and incorporates ligaments. Once developed, this co-simulation framework can be
used to investigate how ligament injury leads to long-term complications.

In an ACL deficient (ACLd) knee, osteoarthritis typically develops 5 to 15 years later (Lohmander,
et al.,, 2007) due to changes in cartilage contact locations that arise from abnormal kinematics
(Chaudhari, et al., 2008). The tibia was shown to be more internally rotated in ACLd knees during
walking (Andriacchi and Dyrby, 2005; Georgoulis, et al., 2003; Stergiou, et al., 2007). (Andriacchi, et al.,
2006) has shown that an internal rotational offset of 5 degrees could increase cartilage volume loss by
44% compared to a non-rotated knee. Changes in cartilage loads are also thought to progress
osteoarthritis (Andriacchi, et al., 2004). A co-simulation framework that predicts these changes in
cartilage loading may be used to investigate the effectiveness of treatment strategies like

neuromuscular training to restore normal function.



There were four goals of this dissertation:

1. To create a 3D knee model including cartilage contact, ligaments, and muscles acting
across the tibiofemoral and patellofemoral joints (for use in a co-simulation framework)

2. To develop a co-simulation framework validated against in vivo measures of knee
kinematics and knee extensor function measured with dynamic MRI

3. To quantify differences in predicted kinematics, knee extensor mechanics, and muscle
forces predicting during gait using co-simulation and a kinematic knee assumption

4. To predict changes in cartilage loading patterns between an intact and an ACL-deficient

knee



Chapter 2: Background

Knee Anatomy and Soft Tissue Function

The development of computational models requires an understanding of how the soft tissue
structures of the knee restrain motion. There are four main ligaments (Figure 1): anterior cruciate
ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL), and lateral collateral

ligament (LCL).
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Figure 1: Anatomy of the knee without the patella and menisci.



The anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) primarily restrict
anterior and posterior tibial translation, respectively; to a lesser extent, the cruciate ligaments also help
control lateral and rotary motion (Bonnin, et al., 1996; Brantigan and Voshell, 1941; Butler, et al., 1980;
Fu, et al., 1993; Fukubayashi, et al., 1982; Girgis, et al., 1975; Gollehon, et al., 1987; Grood, et al., 1981;
Grood, et al., 1988; Haimes, et al., 1994; Hsieh and Walker, 1976; Kanamori, et al., 2000; Kersh, 2010;
Levy, et al., 1982; Markolf, et al., 1976; Sakane, et al., 1999; Shoemaker and Markolf, 1985; Sullivan, et
al., 1984).

The cruciates are composed of bundles that allow them to restrain anterior-posterior motion at
all flexion angles (Figure 2). At extended knee angles, both ACL bundles resist anterior motion while the
posteromedial (PM) bundle of the PCL resists posterior motion; at more flexed knee angles, the
anteromedial (AM) bundle of the ACL resists anterior motion while the anterolateral (AL) bundle of the

PCL resists posterior motion (Bowman Jr and Sekiya, 2010; Girgis, et al., 1975).
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Figure 2: (Top left) Anterior view of a right knee showing the two bundles of the ACL. (Bottom left) Both bundles are in
tension at extension, but only the AM bundle is tight at more flexed angles. Picture from (Bowman Jr and Sekiya, 2010;
Girgis, et al., 1975; Pandy and Sasaki, 1998). (Top right) Posterior view of a right knee showing the two bundles of the PCL.

(Bottom right) The AL bundle is tighter than the PM bundle at more flexed angles. Picture from (Girgis, et al., 1975).

The lateral collateral ligament (LCL) and medial collateral ligament (MCL) provide rotational and
lateral stability. The LCL primarily restricts varus angulation (Fu, et al., 1993; Gollehon, et al., 1987;
Grood, et al., 1988; Kersh, 2010; Seering, et al., 1980) along with lateral motion in extension and rotary
motion in extension and slight flexion (Brantigan and Voshell, 1941; Grood, et al., 1981; Wang and
Walker, 1974), more specifically external rotation (Gollehon, et al., 1987; Markolf, et al., 1976; Seering,
et al., 1980) and possibly internal rotation as well (Kersh, 2010). The main function of the MCL is to
restrain internal-external rotation and valgus angulation (Haimes, et al., 1994; Markolf, et al., 1976;
Seering, et al.,, 1980; Shoemaker and Markolf, 1985), and secondarily to control lateral motion

(Brantigan and Voshell, 1941; Grood, et al., 1981; Hsieh and Walker, 1976; Markolf, et al., 1976; Wang



and Walker, 1974). The collateral ligaments may also provide some slight anterior-posterior stabilization
(Butler, et al., 1980; Haimes, et al., 1994; Markolf, et al., 1976; Shoemaker and Markolf, 1985).

The posterior capsule (Figure 3) helps control lateral and rotary motion (Brantigan and Voshell,
1941), more specifically external rotation (Haimes, et al.,, 1994; Markolf, et al., 1976) and possibly

anterior-posterior translation (Bonnin, et al., 1996; Markolf, et al., 1976).

Figure 3: Posterior view of the knee with posterior capsules shown in blue. Picture from (Gray, 1918).

The principal functions of the menisci (Figure 4) are load transmission and shock absorption
(Aagaard and Verdonk, 1999; Messner and Gao, 1998). Another important function is to fill any ‘dead-
space’ between the femur and tibia to increase joint congruity (Allen and Caldwell, 1995; Simon, et al.,
1973). This helps the menisci in their secondary function, to enhance stability of the knee in anterior-
posterior translation, varus-valgus rotation, and internal-external rotation in the ACL deficient (ACL-d)
(Thompson and Fu, 1993; Wang and Walker, 1974) and possibly the ACL intact knee (Kersh, 2010;

Markolf, et al., 1981; Seale, et al., 1981). The medial meniscus limits anterior tibial translation in the



ACL-d knee (Allen, et al., 2000; Bargar, et al., 1980; Bonnin, et al., 1996; Levy, et al., 1982; Markolf, et al.,
1984; Shoemaker and Markolf, 1986) whereas the lateral meniscus does not (Levy, et al., 1989). The
lateral meniscus may act as a primary stabilizer in medial-lateral translation (Kersh, 2010). The menisci

also help to cushion and prevent hyperextension and hyperflexion (Brantigan and Voshell, 1941).
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Figure 4: Anatomy of the knee with the menisci highlighted. Picture from (Seedhom, 1979).
Table 1 summarizes the primary restraints to knee motion.

Table 1: Summary of primary ligament restraining function

Degree of Freedom Primary Restraint
Anterior Translation  ACL (both bundles in extension and anteromedial bundle at more flexed knee
angles)

Posterior Translation PCL (posteromedial bundle at extension and anterolateral bundle at more
flexed angles)
Medial Translation -

Lateral Translation LCL in extension
Posterior capsule

Internal Rotation MCL

External Rotation MCL

LCL in extension and slight flexion
Posterior capsule

Varus Angulation LCL

Valgus Angulation MCL




Movement simulations

Movement simulations can be used to predict immeasurable muscle forces, ligament loading,
and cartilage contact during movement. Pandy provides a nice review of how computational modeling
can be used with gait measures to study muscle and joint function in human locomotion (Pandy and
Andriacchi, 2010). These simulations typically involve a forward dynamics simulation and a
computational model. Only the forward dynamics simulation will be explained in more detail.
Forward Dynamics Simulation

A forward dynamics simulation is typically used to answer ‘what if’ situations. For example, if
the ACL is damaged and removed, how will the knee move? A forward dynamics simulation involves
integrating a set of ordinary differential equations for muscle dynamics (activation dynamics and
musculotendon dynamics) and equations of motion to compute simulated kinematics from muscle
excitations (Figure 5). These muscle excitations can either be from electromyography measurements or

calculated via a computed muscle control algorithm (Thelen and Anderson, 2006b).
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Figure 5: A forward dynamic simulation integrates ordinary differential equations for muscle dynamics and the equations of

motion to calculate kinematics from muscle excitations. Figure adapted from (Pandy, 2001).
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Moment Arms

In the equations of motion for a system of bodies, muscle moment arms determine how much
torque muscle forces produce about a joint. Therefore, moment arms are an important aspect of
movement simulations. Only two techniques to calculate moment arms will be presented here: the
tendon excursion method and the finite helical axis method. A comprehensive review of other
techniques in the literature used to calculate muscle moment arms can be found in (Tsaopoulos, et al.,
2006).

A common technique to calculate a muscle’s moment arm is by the tendon excursion method.
The work done in changing the length of a muscle is converted to potential energy in the ligament and
kinetic energy of bone motion. The ligament is assumed inextensible in this method so the potential
energy is ignored, leaving just the kinetic energy of the bones. Work is force (F) times a change in
distance (dl) or torque (M) times a change in angle (d©). Therefore, this method can be expressed as the
total work done to change the length of the muscle is converted to a six degree of freedom motion (3
translations and 3 rotations of the bone, denoted by subscripts 1,2, and 3) (Eq 1).

F(d)=M;d6; + M,dB, + M3d6; + Fydx; + F,dx, + F3dx; Eql
Torque divided by force is the moment arm. Therefore, the moment arm for each degree of freedom is
given by Eq 2.

dl Eq2
de,

moment arm,=
To account for ligament stretch, other authors have used the finite helical axis (FHA) method where the
moment arm is the shortest distance between the line of action of the muscle and the finite helical axis

(Eq 3) (Krevolin, et al., 2004; Pandy, 1999; Sheehan, 2007a).

moment arm=|F0Q- (aM x ﬁFHA)| Eq3



11

In this equation, r°% is a position vector from any point O on the FHA to any point Q on the muscle’s
tendon line of action, u™ a unit vector along the muscle’s line of action, and u™ a unit vector along the

FHA.
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Chapter 3: Knee Model

Introduction

Traditionally, cartilage loads are estimated using a serial approach (Kim, et al., 2009; Shelburne,
et al., 2005b; Taylor, et al., 2004). A musculoskeletal model is first used to estimate muscle forces via
optimization (Thelen, et al., 2003). Then, these muscle forces are applied to a computational joint model
to estimate cartilage loading. However, the musculoskeletal model used to compute muscle forces
typically represents the knee joint as a kinematic joint that behaves invariant of load, which others have
suggested is not true (Dyrby and Andriacchi, 2004; Tsaopoulos, et al., 2007; Westphal, 2009).

Simultaneous prediction of musculoskeletal dynamics and soft tissue deformation has been
used to couple a musculoskeletal model and finite element model of the foot (Halloran, et al., 2009) and
knee implant (Lin, et al., 2010), thus circumventing the kinematic joint assumption. The large
computational cost of solving a finite element model at every time step was avoided by development of
a surrogate model. However, the initial generation of a surrogate model is costly and must be re-
generated if a part of the detailed model is changed (e.g. articular geometry). Therefore the goal of this
work was to construct a discrete element model of the tibiofemoral and patellofemoral joint that could

be solved quickly within the context of whole body movement.

Methods

Articular Geometry
The articulating geometry of a right femur (bone and cartilage) was obtained from the MRI of a
male subject 29 years old, 185 cm in height, and 113 kg (Bradford, 2011). This geometry was compared

to data in the literature to ensure it was an average size femur (Figure 6).
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Yoshioka: 13 +- 3.1 (males)
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72 +- 4.7 (females)
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75.0 +- 3.8 (in vivo females)
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80 +- 6.1 (females)
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Rostlund: 75 = 95

(14)
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Yoshioka: 70 +- 4.3 (male)
63 +- 4.5 (female)
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]

Figure 6: Comparison of subject (denoted as ACL1) with femur geometry measurements from the literature (Dargel, et al.,
2010; Griffin, et al., 2000; Mensch and Amstutz, 1975; Rostlund, et al., 1989; Seedhom, et al., 1972; Yoshioka, et al., 1987).

All measurements are in mm.
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The tibial plateaus were modeled as two planes with the slopes based on geometric descriptions
of 23 cadaver knees (Garg and Walker, 1990). The lateral plateau sloped 7 degrees posteriorly and 2
degrees laterally while the medial plateau sloped 2 degrees posteriorly and medially (Kim, 1996; Pandy,
et al., 1997). These planes were positioned so at full extension, the tibia was abducted 0.0 deg and tibial
origin was 0.404 m inferior to the femoral origin (Arnold, et al., 2010).
Tibiofemoral Joint
Generalized Coordinates

The body fixed coordinate systems for the femur and tibia are displayed in Figure 7. The origin
of the femur coordinate system was placed at the center of the femoral head with the x-axis pointing
anteriorly, the y-axis superiorly, and the z-axis to the right (laterally for the right knee) (Arnold, et al.,
2000; Delp, 1990). The y-axis was placed along a line connecting the femoral head and the center of the
femoral condyles. The tibial coordinate system was located at the midpoint of the femoral condyles with
the knee in full extension. Consistent with the femur coordinate system, the axes were oriented with the
x-axis pointing anteriorly, the y-axis superiorly, and the z-axis to the right (laterally for the right knee)

(Arnold, et al., 2000; Delp, 1990).



15

YrEMUR

ZeemMuRd e

Figure 7: The body fixed coordinate systems of the femur and tibia for the right knee.

The tibiofemoral joint consisted of six generalized coordinates: three translations followed by
three rotations about the x, y, and z-axes. These translations were defined as the location of the tibia
origin with respect to the femur origin, expressed in the femur coordinate system. Rotation angles
between the bones were calculated using a body fixed 3-1-2 rotation of the tibia with respect to the
femur. Rotation about the +z-axis was termed extension, +x as adduction, and +y as internal rotation.
With the knee in full extension, both coordinate systems were aligned (all rotation angles 0.0) with the
tibia displaced -0.404 m in the y direction and -0.001 m in the z direction (Arnold, et al., 2010).

Contact

Contact forces between the bones were calculated and applied using two steps: collision

detection and force calculation. For collision detection, the femur including the articular cartilage was

discretized into 6096 triangles (Figure 8).
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Figure 8: Discretized geometry of the femur, including the articular cartilage.

At each point in time, the position of each triangle centroid with respect to the corresponding
tibial plane origin (medial or lateral) was calculated. Using this position vector, along with the normal
vector to the tibial plane, the penetration depth of each triangle was computed. If the center
penetration depth was greater than or equal to zero, contact was present and a contact force calculated
for this triangle-plane interface using a linear elastic foundation model (Eq 4) as used by (Anderson, et
al., 2010c; Blankevoort and Huiskes, 1991; Blankevoort, et al., 1991b; Caruntu and Hefzy, 2004; Kim,
1996; Pandy, et al., 1997; Shelburne, et al., 2004). Cartilage was modeled as an elastic layer resting on a
rigid foundation of bone. Other assumptions included deformation of this elastic layer to be normal to

the foundation (medial/lateral expansion of the cartilage is neglected); area of contact to be large
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compared to the cartilage layer thickness; and the normal displacements of the cartilage to be small
during loading. Cartilage parameters used were modulus of 5 MPa, Poisson’s ratio of 0.45, no damping,
and a uniform thickness of 3 mm for each bone (Blankevoort and Huiskes, 1991; Blankevoort, et al.,
1991b; Caruntu and Hefzy, 2004; Kim, 1996; Li, et al., 2005; Pandy, et al., 1997; Shelburne, et al., 2004).

E(1-v)

_ Eq 4
F_A(1+ v)(1 = 2v)

d
h

In this equation, F = force between contacting objects, A = area of contact (used the area of the
contacting triangle), E = elastic modulus of cartilage, I/ = Poisson’s ratio of cartilage, d = penetration

depth, and h = combined thickness of femur and tibia cartilage.

Patellofemoral Joint
Generalized Coordinates

The body fixed coordinate system for the patella was placed at the proximal pole of the patella

with the x-axis pointing anteriorly, the y-axis superiorly, and the z-axis to the right (laterally for the right

knee) (Figure 9) (Arnold, et al., 2000; Delp, 1990).

YrEMUR

ZFEMUR

| T'YpateLLa
|

ZpATELLA B

Figure 9: The body fixed coordinate systems of the femur and patella for the right knee.
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The patellofemoral joint consisted of one degree of freedom, translation of the patella along the
y-axis of the femur, with translation along the x-axis and rotation about the z-axis prescribed as
functions of this degree of freedom (Figure 10). These translations were defined as the location of the
patella origin with respect to the femur origin, expressed in the femur coordinate system. With the knee
in full extension, both coordinate systems were aligned with the patella displaced -0.366 m along the y-
axis (Arnold, et al., 2010). There was no contact model between the patella and femur.

601
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Figure 10: The anterior-posterior translation and flexion-extension angle of the patella were prescribed functions of superior-

inferior translation.
Ligaments
The model consisted of 19 ligament bundles (Figure 11). To approximate the path from origin to
insertion, ligament geometries were represented as line segments. The origin and insertions of the ACL
and PCL bundles were placed using anatomical landmarks (Edwards, et al., 2007; Girgis, et al., 1975;
Gray, 1918; Kopf, et al., 2009; Petersen and Zantop, 2007) as well as the PFL and LCL (Davies, et al.,

2004; Meister, et al., 2000). The MCL bundles were positioned using data by (Shelburne, et al., 2006).
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The posterior capsule bundles were located according to (Abdel-Rahman and Hefzy, 1998). The patellar

tendon was positioned according to (Arnold, et al., 2010).

aPCL: anterolateral
bundle of posterior
cruciate ligament

pPCL:
posteromedial
bundles of posterior
cruciate ligament

CAPm: medial bundle
of posterior capsule

CAPa: arcuate
popliteal bundle of
posterior bapsule

aCM: anterior bundle of deep

= 2 pMCL: posterior bundles of
medial collateral ligament

superficial medial collateral
ligament

pPCM: posterior bundle of deep
medial collateral ligament iMCL: central bundles of
superficial medial

aMCL: anterior bundle of collateral ligament

superficial medial
collateral ligament

Patlig: patellar tendon

ITB: iliotibial
band

aACL: anteromedial
bundle of anterior
cruciate ligament

pACL: posterolateral PFL:. ;i
bundle of anterior popllteoflbulal
cruciate ligament ligament
LCL: lateral
CAPI: lateral bundle collateral
of posterior capsule ligament

CAPo: oblique
popliteal bundle of
posterior capsule

Figure 11: Nineteen ligament bundles were included in the model.



Table 2 displays the attachment points of the ligaments.

Table 2: Coordinates of ligament attachments in local segment frames.

Ligament Tibial Attachment (m) Femoral/Patellar Attachment (m)
aACL (0.0029, -0.0215, 0.0003) (-0.018, -0.399, 0.0062)

pACL (0.0023, -0.0216, 0.0034) (-0.0179, -0.4051, 0.0063)
aPCL (-0.0215, -0.0241, 0.0018) (-0.0017, -0.4113, -0.0046)
pPCL (-0.0214, -0.0303, 0.0015) (-0.0035, -0.4116, -0.008)
aMCL (0.01042, -0.08125, -0.01078) (0.00129, -0.38946, -0.04106)
iMCL (0.00466, -0.0858, -0.01287) (-0.00546, -0.38937, -0.04157)
pMCL (-0.01721, -0.03464, -0.03148) (-0.00546, -0.38937, -0.04157)
aCM (0.00756, -0.0419, -0.02847) (0.00129, -0.38946, -0.04157)
pCM (0.00261, -0.0419, -0.02847) (-0.00546, -0.38937, -0.04157)
LCL (-0.01999, -0.0601, 0.04066) (-0.01568, -0.405, 0.04274)
PFL (-0.02509, -0.045, 0.02916) (-0.0106, -0.4123, 0.0439)
CAPa (-0.025, -0.05627, 0.02627) (-0.0322, -0.4134, -0.0248)
CAPI (-0.025, -0.05627, 0.02627) (-0.0355, -0.4118, 0.0253)
CAPo (-0.025, -0.05627, -0.02373)  (-0.0355, -0.4118, 0.0253)
CAPm (-0.025, -0.05627, -0.02373)  (-0.0322, -0.4134, -0.0248)
patlig (0.0282, -0.0579, 0.0057) (0.0021, 0.0015, 0.0001)
Med_patlig (0.0287, -0.0587, -0.0019) (0.0022, 0.0053, -0.0084)
Lat_patlig (0.0282, -0.0579, 0.0084) (0.0022, 0.0053, 0.0103)

20

To avoid penetration of the femur with the PFL and MCL, wrapping surfaces were included

(Figure 12 and Table 3).

Figure 12: The PFL and MCL wrapped about the femur.
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Table 3: Wrapping object parameters

Wrapping Object Geometry Location in Femur
PFL and femur Sphere with radius 0.024 m  (-0.0123, -0.4056, 0.020)
MCL and femur Sphere with radius 0.044 m  (-0.0066, -0.4025, 0.0003)

Ligaments were modeled as nonlinear elastic springs (Figure 13 and Eq 5 through Eq 7) with
linear damping (Blankevoort and Huiskes, 1991; Blankevoort, et al., 1991b; Shelburne, et al., 2011;

Shelburne, et al., 2006; Wismans, et al., 1980).
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Figure 13: Figure from (Blankevoort and Huiskes, 1991). Ligaments were modeled with a nonlinear force (f) — strain (&) curve.

g, is the transition strain, € the current ligament strain calculated from zero-load length and current length, and f the force.

1ke? . 0 <&<2g Eq5
f=——+cl
4 3]
f=Kk(e-g) +ci £ > 2g Eq 6
f=0 € <0 Eq7

In these equations, g is the transition strain, € the current ligament strain calculated from zero-load
length and current length, k the ligament stiffness, ¢ the damping coefficient, I the rate of change of the
ligament length, and f the force in the ligament. The damping coefficient was set at 10.0 Ns/m for all
ligaments. The transition strain at which the force-strain behavior transitioned from nonlinear to linear

behavior was set at 0.03 (Blankevoort and Huiskes, 1991; Butler, et al., 1986). Properties of ligaments
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such as reference strain (strain in the ligament at full extension) and stiffness were adapted from

(LaPrade, et al., 2005; Shelburne, et al., 2004; Shin, et al., 2007). The model values for the ligament

properties and how they compare to the literature are shown in Table 4. A literature review of ex vivo

and in silico ligament properties can be found in Appendix A. Since the ligament model required the

current ligament strain to calculate force, the reference strain for each ligament was used to set the

zero-load length (slack length) of the ligament (Blankevoort and Huiskes, 1991). At the beginning of each

simulation, the model was put into a reference configuration and the length of each ligament retrieved

(reference length). Then the user specified reference strains were used in conjunction with the

reference length to calculate the required slack lengths.

Table 4: Comparison of Model Ligament Parameters with Literature

Ligament Model Literature Literature Range  Model Literature Range  Model Literature Model Literature
Stiffness Range (from other Reference  (from other Slack Range Reference  Range
(N/strain)  (from musculoskeletal  Strain (-) musculoskeletal Length  (mm) Length (mm)

tensile models) models) (mm) from ex (mm) from ex
testing of vivo or in vivo or in
tissue) vivo data vivo data

aACL 4000 Total 1000 to 5000 0.02 0to 0.093 34 22.15 to 35 32.5+-2.8

pACL 4000 stiffness 1500 to 5000 0.02 0.01to00.10 29 36.5 29 27.6+5.2
1100 to
9300

aPCL 4000 Total 2600 to 9000 -0.12 -0.39 to 0.004 30 29.5 to 32 27 25to 31

pPCL 1600 stiffness 1580 to 9000 -0.05 -0.12t0 0.05 32 30 32to 46
1000 to
12200

aMCL 2000 Total Total stiffness 0.02 -0.274 t0 0.10 100 - 102 21to 112

iMCL 2000 stiffness 5160 to 14500 0.02 104 106

pMCL 4000 6200 to 0.05 50 53

aCM 2000 7100 0.02 58 59

pCM 2000 0.05 57 60

LCL 3000 1300 to 2000 to 8000 0.05 -0.25t0 0.1 57 48.7 to 60 51.5to 74
3400 50.9

PFL 2000 1900 - -0.05 - 45 - 43 42.6 +-7.3

CAPa 1500 - Total stiffness 0.05 -0.18t0 0.1 66 - 69 -

CAPI 2000 2000 to 8100 0.05 48 50

CAPo 1500 0.05 68 71

CAPm 2000 0.05 46 48

ITB 5000 4800 to - 0.00 - 571 490 to 571 -
8700 540

PT 6000 Total inextensible 0.00 inextensible 48 41.5 to 48 45 to 52

Medial 6000 stiffness 0.00 52 57.8 52

PT 13000 to

Lateral 6000 28000 0.00 51 51

PT
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Muscles

The vastii muscles were included when using the model to simulate passive flexion-extension
and stiffness behavior. Inclusion of these is consistent with experimental cadaveric studies which kept
the extensor mechanism intact when assessing stiffness and passive behavior (Figure 14). The geometry
and wrapping were the same as those used by (Arnold, et al., 2010) with properties shown in Table 5

using a Hill-type model to characterize the passive force characteristics of the vastii (Zajac, 1989).

Vastus Lateralis

Vastus Intermedius

Vastus Medialis

Figure 14: The vastii muscles were included to keep the knee extensor mechanism intact.

Table 5: Properties of vastii muscles

Muscle Optimal Fiber Pennation Angle Maximum Tendon Slack
Length (cm) (deg) Strength (N) Length (cm)

Vastus 9.92 4.54 1024.2 10.6

intermedius

Vastus Lateralis 9.94 18.38 2255.4 13.0

Vastus Medialis 9.68 29.61 1443.7 11.2

Dynamics

The knee model was created using the SIMM Dynamics Pipeline (MusculoGraphics, Evanston, IL,
USA), which uses SD/Fast (Symbolic Dynamics, Mountainview CA, USA) to generate all equations of
motion. The mass properties and overall bone dimensions were consistent with those of a 75 kg male

(de Leva, 1996b; Delp, 1990).



24

Model Verification

The following loading conditions and constraints were applied to assess the capacity of the knee

model to emulate behavior measured in cadaveric knees:

e passive flexion/extension of the tibia (0 to 70 deg flexion)
e axial rotation torque (5 Nm)
e anterior/posterior force (100 N)

e varus/valgus torque (10 Nm)

To simulate the experimental setups, gravity was neglected and the ITB ligament removed for all of the

following verification tests.

Passive Flexion/Extension Test

The model was used to simulate passive flexion/extension as measured experimentally by
(Markolf, et al., 1976; Wilson, et al., 2000). In this simulation, the knee was fixed at full extension with
all other tibiofemoral degrees of freedom unconstrained and allowed to come to an equilibrium
position; then tibiofemoral flexion/extension was prescribed (Figure 15) with the other tibiofemoral
degrees of freedom still unconstrained. The knee was only flexed up to 70 degrees since this is the
maximum flexion angle the knee reaches in gait (Lafortune, et al., 1992). The movement of the most
posterior tibial attachment point of the ACL from the equilibrium position was analyzed and compared

with (Wilson, et al., 2000).
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Figure 15: Flexion angle prescribed in the passive flexion/extension test.

Axial Rotation Stiffness Test

A 5 Nm internal and external rotational torque were applied to the tibia (Figure 16) and the
resulting axial rotation measured and compared with the literature (Anderson, et al., 2010b; Coobs, et
al., 2007; Coobs, et al., 2010; Griffith, et al., 2009; Markolf, et al., 1981; Markolf, et al., 1976; Shoemaker
and Markolf, 1985; Tsai, et al., 2010). For the entire test, the tibiofemoral flexion angle was fixed and all
other degrees of freedom unconstrained. Flexion angles of 0, 15, 20, 30, 40, 45, and 60 were considered.
First, the model settled at an equilibrium position. Then, a 5 Nm axial torque was applied to the tibia.
However, to be consistent with the experimental setups in the literature, the direction of the torque was
defined with respect to the fixed femur frame (Figure 17) so the applied torque would not change
direction as the tibia moved. Finally, the axial rotation of the tibia with respect to the neutral
configuration was measured and compared to the literature. The neutral configuration was defined as

the inflection point of the applied torque versus rotation curve, where zero axial torque was applied.
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Figure 16: Magnitude of axial rotation torque applied to the tibia in full extension.
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Figure 17: An axial torque of 5 Nm was applied to the tibia. This torque, T, was defined in the femur frame by the
equation shown where O is the tibiofemoral flexion angle. A -5 was used in the equation to apply an external rotation

torque.

Anterior/ Posterior Stiffness Test
The tibia was subjected to a 100 N anterior and posterior force (Figure 18) with the resulting

translation and coupled axial rotation measured and compared with the literature (Gollehon, et al.,
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1987; Levy, et al., 1989; Markolf, et al., 1981; Markolf, et al., 1976; Shoemaker and Markolf, 1985;
Sullivan, et al., 1984). Throughout the simulation, the tibia was fixed at a prescribed tibiofemoral flexion
angle. Flexion angles of 0, 15, 30, 45, 60, and 75 were considered. After the model settled at an
equilibrium position, an anterior and posterior force was applied to the tibia. Similar to the axial rotation
test, the direction of the force was defined with respect to the fixed femur frame (Figure 19) so the
applied force would not change direction as the tibia moved. The medial/lateral position of the point
force application (Figure 19) was applied to match the coupled internal rotation seen in the literature
when an anterior force is applied. The coupled axial rotation and anterior/posterior translation of the
tibia with respect to the neutral configuration were measured and compared to the literature. This
translation was the movement of the point of force application (Figure 20). The neutral configuration
was defined as the inflection point of the applied force versus translation curve, where zero force was

applied.
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Figure 18: Magnitude of anterior/posterior force applied to the tibia in full extension.
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Figure 19: An anterior/posterior force of 100 Nm was applied to the tibia. (left) This force, F,,,,, was defined in the femur
frame by the equation shown where O is the tibiofemoral flexion angle. A -100 was used in the equation to apply a posterior
force. (right) The point of force application was positioned to match the coupled internal rotation seen in the literature that

accompanies anterior translation.
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Figure 20: The anterior/posterior translation of the tibia was measured at the point of force application.

Varus/Valgus Stiffness Test
A 10 Nm varus and valgus torque were applied to the tibia (Figure 21) and the resulting rotation

measured and compared with the literature (Anderson, et al., 2010a; Coobs, et al., 2007; Gollehon, et
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al., 1987; Griffith, et al., 2009; Markolf, et al., 1981; Markolf, et al., 1976; Tsai, et al., 2010). For the
entire test, the tibiofemoral flexion angle was fixed and all other degrees of freedom unconstrained.
Flexion angles of 0, 15, 20, 30, 40, 45, 60, and 75 were considered. First, the model settled at an
equilibrium position. Then, a varus/valgus torque was applied to the tibia. However, to be consistent
with the experimental setups in the literature, the direction of the torque was defined with respect to
the fixed femur frame (Figure 22) so the applied torque would not change direction as the tibia moved.
Finally, the rotation of the tibia with respect to the neutral configuration was measured and compared
to the literature. The neutral configuration was defined as the inflection point of the applied torque

versus rotation curve, where zero varus/valgus torque was applied.

Varus Torque (Nm)

_10 L L L L L |
0 5 10 15 20 25 30

Time (s)

Figure 21: Magnitude of varus/valgus torque applied to tibia in full extension.
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Figure 22: A varus/valgus torque of 10 Nm was applied to the tibia. This torque, T,,,,, was defined in the femur frame by the

equation shown where O is the tibiofemoral flexion angle.

Ligament Function

The force and torque each ligament exerted on the tibia was calculated during the stiffness tests
to assess ligament function (Figure 23). For example, when an anterior-posterior force was applied, the

anterior-posterior component of each ligament force on the tibia was calculated.

Ta

ﬁa origin

Tibia origin Tibia origin

T, T, T,
Tibia CO
Fix Fix Fix
Axial rotation Anterior/posterior Varus/valgus
stiffness test stiffness test stiffness test

Figure 23: Free body diagrams of the tibia for each of the stiffness tests. T, and F, are the applied torque and force,

respectively. T, and F, are the torque and force of the ligaments and femur acting on the tibia.
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Results

Passive Flexion/Extension Test

The passive motion of the model is consistent with that seen ex vivo (Figure 24). However, the
model does show greater hysteresis in axial rotation than seen experimentally. The maximum ligament
strain reached by any ligament was 12% in the posterior bundle of the PCL. This is slightly greater than

the 10% strain limit other models have used (Amiri, et al., 2007; Blankevoort, et al., 1991a).
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Figure 24: Passive motion of the model compared with ex vivo data (Wilson, et al., 2000).
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Stiffness Tests
Shown in Figure 25 through Figure 30 are the rotations and translations resulting from an
applied axial torque, anterior/posterior force, and varus/valgus torque, along with the force and torques

of each ligament on the tibia.
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Figure 25: Rotation resulting from 5 Nm torque applied about the long axis of the tibia for the model and literature
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Figure 29: Rotation resulting from 10 Nm varus/valgus torque applied to the tibia for the model and literature (Anderson, et
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Discussion

The passive motion of the model agrees fairly well with the literature. However, according to
the stiffness tests, the model seems slightly lax in axial rotation and posterior translation as well as tight
in varus/valgus rotation. The model was not tuned to the stiffness tests since this might produce
unrealistic ligament properties. For example, to increase axial rotation stiffness the stiffness and/or
reference strain of the LCL would need to be increased beyond literature values (Table 4). This also holds
for the PCL to increase posterior translational stiffness. Varus/valgus rotation may be stiff due to the

cartilage properties used. Ligament functions in the model are consistent with the literature (Table 6).

Table 6: Comparison of ligament function between the model and literature

Degree of Primary Restraint in Literature Primary Restraint in Model
Freedom
Anterior ACL (both bundles in extension ACL (aACL at more flexed angles)
Translation and anteromedial bundle at more
flexed knee angles)
Posterior PCL (posteromedial bundle at PCL (aPCL recruited at more flexed
Translation extension and anterolateral angles)
bundle at more flexed angles) LCL (at more extended angles)
PFL (at more extended angles)
Internal MCL pMCL
Rotation LCL (at more flexed angles)
External MCL Posterior capsule
Rotation LCL in extension and slight flexion LCL
Posterior capsule aCM
PFL
Varus LCL LCL
Angulation PCL (at flexed angles)
Valgus MCL Posterior capsule
Angulation ACL (at flexed angles)

There are a number of limitations to consider in this knee model. The ligaments were
represented as spring elements, rather than deformable 3D representations that account for spatial
variations in strain. The articular geometry of the tibial plateaus was represented by planes when

computing contact forces between the tibia and femur. In addition, the a one degree of freedom
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patellofemoral joint allowed for patella glide to occur as a result of patellar tendon stretch but did not
allow for non-sagittal rotations or translations. These choices were made for computational reasons so
the model could be quickly solved within the context of whole body movement. Menisci were not
included in the model. (Markolf, et al., 1981) has shown that removal of the menisci increased anterior-
posterior laxity by 1 to 3.6 mm and axial rotation laxity by 2.4 to 4.6 degrees, which may account for
some of the excessive posterior translation and axial rotation seen in model.

In conclusion, a musculoskeletal model of the knee was developed that included cartilage
contact and ligaments with the intention of being incorporated into simulations of whole body
movement. The model was minimally tuned and provides reasonable estimates of the passive properties

of the knee as seen ex vivo.
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Chapter 4: The Effect of External Loading
on the 3D Patellar Tendon Moment Arm
Measured with Dynamic MRI

Introduction

Musculoskeletal models are often used to predict internal knee loads during movement. For
example, models have been used to investigate knee ligament injury risk during cutting maneuvers
(McLean, et al., 2003), to identify causes of anterior knee pain (Besier, et al., 2009), and to compare the
effect of various rehabilitation strategies on internal knee loading (Neptune and Kautz, 2000). Such
applications require consideration of the coupled influence of muscle, ligament, and cartilage contact
forces within the knee. Hence, knee models have steadily become more sophisticated over time to
include detailed articular surface geometries, soft tissue properties, and muscular actions across both
the tibiofemoral and patellofemoral joints (Abdel-Rahman and Hefzy, 1998; Blankevoort and Huiskes,
1991; Caruntu and Hefzy, 2004; Dhaher, et al., 2010; Lin, et al., 2010; Shelburne, et al., 2006; Shin, et al.,
2007). However, it remains challenging to assess the capacity of knee models to accurately represent in
vivo behavior.

Traditionally, model predictions of knee kinematics are compared to ex vivo experimental
measures of load-displacement behavior at the joint level (Anderson, et al., 2010a; Coobs, et al., 2010;
Gollehon, et al., 1987; Griffith, et al., 2009; Tsai, et al., 2010; Walker, et al., 1988). However, under in
vivo conditions, muscle forces can substantially alter both skeletal kinematics and cartilage loading.
Traditional motion capture technology can be used to track knee kinematics during movement but has
limited accuracy to measure tibiofemoral translations (Manal, et al., 2003) and secondary rotations in

the transverse and frontal planes (Akbarshahi, et al., 2010).
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Emerging techniques in dynamic imaging have allowed investigators to begin to track three-
dimensional in vivo knee kinematics (Barrance, et al., 2007; Draper, et al., 2008; Seisler and Sheehan,
2007; Sheehan, 2007b; Sheehan, et al., 2009). For example, dynamic magnetic resonance imaging (MRI)
techniques have been used to assess the time-varying tibiofemoral kinematics, finite helical axis, and
patellar tendon moment arm during unloaded knee extension (Seisler and Sheehan, 2007; Sheehan,
2007a). We recently used dynamic MRI to show that small variations in external loading can significantly
alter in vivo kinematic behavior at both the tibiofemoral and patellofemoral joints (Westphal, 2009).
These load-dependent changes may be important to consider in clinical applications since kinematic
changes could alter the finite helical axis and musculotendon moment arms. Indeed, a recent in vivo
study showed that the patellar tendon moment arm with quadriceps contraction varies by 6% between
a relaxed and fully contracted state (Tsaopoulos, et al., 2007). However that study only considered two-
dimensional knee motion and did not have a model to investigate the potential underlying mechanisms.

The first objective of this study was to assess how the in vivo tibiofemoral finite helical axis and
patellar tendon moment arm vary with loading. The second objective was to investigate the capacity of
a muscle-actuated knee model to emulate load-dependent behavior observed in vivo (Westphal, et al.,
2012). To do this, we first modified a lower extremity model to include a 6 degree of freedom
tibiofemoral joint that included cartilage contact, ligaments, and muscles acting across the joint. We
then used the model to predict knee kinematics, tibiofemoral rotation axis, and patellar tendon moment
arm during a knee flexion-extension task performed against an external elastic and inertial load. These
model predictions were directly compared to in vivo measures obtained by dynamically imaging subjects
performing knee flexion-extension under similar loading conditions. Finally to better understand the

model, we assessed the sensitivity of model predictions to variations in ligament properties.
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Methods

Lower Extremity Model

We started with a lower limb musculoskeletal model that included 44 musculotendons acting
about the hip, knee, and ankle joints (see Appendix B) (Arnold, et al., 2010). The one degree of freedom
(dof) knee in the model was replaced by a six dof tibiofemoral joint (Shelburne, et al., 2006; Shin, et al.,
2007) and a one dof patellofemoral joint. Nineteen ligament bundles were represented (Figure 31): the
MCL (5 bundles), LCL (1 bundle), popliteofibular ligament (1 bundle), ACL (2 bundles), PCL (2 bundles),
posterior capsule (4 bundles), iliotibial band (ITB), and patellar tendon (3 bundles). Each ligament was
represented as a nonlinear spring (Blankevoort and Huiskes, 1991; Blankevoort, et al., 1991b; Shelburne,
et al.,, 2011; Shelburne, et al.,, 2006; Wismans, et al., 1980) with origins and insertions based on
anatomical landmarks (Abdel-Rahman and Hefzy, 1998; Arnold, et al., 2010; Davies, et al., 2004;
Edwards, et al., 2007; Girgis, et al., 1975; Gray, 1918; Kopf, et al., 2009; Petersen and Zantop, 2007;
Shelburne, et al., 2006) and wrapping about the femoral condyles accounted for.

The geometry of the distal femur and cartilage was segmented from high resolution MRI images
(Bradford, 2011) of a young male knee with average femoral geometry (29 years old, 185 cm in height,
113 kg, and 87 mm epicondylar width). The medial and lateral tibial plateaus were modeled as planes
with the medial plateau sloping two degrees posteriorly and medially and the lateral plateau sloping
seven degrees posteriorly and two degrees laterally (Shelburne, et al., 2006). Tibiofemoral contact
forces were computed via an elastic foundation model with cartilage properties of 5 MPa for elastic
modulus, 0.45 for Poisson’s ratio, and 3 mm uniform thickness for each bone (Li, et al., 2005; Shelburne,
et al., 2006). Penetration depth was calculated as the distance between the centroid of each triangle of
the femoral mesh and the plane representing the corresponding tibial plateau. The one dof

patellofemoral joint allowed for the patellar translation within a constrained path relative to the femur,
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with the path corresponding to that defined in the lower extremity model of (Arnold, et al., 2010).

Quadriceps and patellar tendon forces were applied to the proximal and distal ends of the patella.

l

Figure 31: The model was comprised of nineteen ligament bundles.

The reference strains (strains in the ligaments with the knee in full extension) and stiffnesses of the ligaments (

Table 7) were primarily adapted from (Shelburne, et al., 2006; Shin, et al., 2007). Small
adjustments of the reference strains were introduced so that the relaxed tibiofemoral rotation was
approximately zero in full extension, as defined in (Arnold, et al., 2010). The knee model was used to
simulate passive flexion, anterior-posterior tibia loading, and axial tibia rotation tests that have been
performed in cadaveric studies (e.g. (Markolf, et al.,, 1981)). Model predictions of tibiofemoral
translations, adduction, and internal rotation were within the range of experimental values reported in

the literature (see Chapter 3).
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Table 7: Ligament parameters

Ligament Stiffness (N/strain)  Reference Strain (-)
aACL 4000 0.02
pACL 4000 0.02
aPCL 4000 -0.12
pPCL 1600 -0.05
aMCL 2000 0.02
iMCL 2000 0.02
pMCL 4000 0.05
aCM 2000 0.02
pCM 2000 0.05
LCL 3000 0.05
PFL 2000 -0.05
CAPa 1500 0.05
CAPI 2000 0.05
CAPo 1500 0.05
CAPmM 2000 0.05
patlig 6000 0.0
Medial patlig 6000 0.0
Lateral patlig 6000 0.0
ITB 5000 0.0

In Vivo Knee Kinematics

High resolution static MR images were used in conjunction with dynamic MRI to track
tibiofemoral and patellofemoral kinematics (Westphal, 2009). Eight healthy subjects (four male, four
female, ages 22-28 years) participated. Each subject performed cyclic knee flexion-extension (30 cycles
per minute) through ~35 degrees of motion within the bore of a MR scanner (Figure 32). A MRI
compatible loading device was used to apply two distinct loading conditions: an elastic loading condition
where subjects extended the knee against a torsional spring and an inertial condition where subjects
used the quadriceps to decelerate rotating disks during knee flexion (Westphal, 2009). These elastic and
inertial loading conditions induced quadriceps activity with knee extension and flexion, respectively
(Figure 32). We note that quadriceps loading with knee flexion is more comparable to what is observed

during the load acceptance phase of walking. Subjects performed three trials for each loading condition.
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Skeletal motion was tracked using a cine phase contrast (cine-pc) sequence (Pelc, et al., 1995) to
measure 3D tissue velocities during the cyclic knee flexion-extension tasks. A sagittal-oblique imaging
plane (pixel size of 0.94 x 0.94 mm) was defined that bisected the femur, tibia, and patella (Figure 32). A
cine sequence was used to acquire 40 frames over the motion cycle. At each frame, linear least squares
was used to calculate the 3D translational and angular velocity of the femur, tibia, and patella that best
agreed with measured pixel velocities (Westphal, et al., 2012). Numerical integration of the rigid body
velocity data was then performed to compute the 3D translations and orientations of the bone
segments throughout the motion cycle (Pelc, et al., 1995; Sheehan, et al., 1999). Six degree of freedom
motion at the tibiofemoral and patellofemoral joints were then computed. 3D joint angles were
determined using a Cardan rotation sequence (body fixed 3-1-2) consisting of flexion, adduction, and

then internal rotation (Grood and Suntay, 1983).
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Figure 32: (a) MR compatible loading device, (b) Sagittal-oblique imaging plane, (c) Quadriceps activity (shown for one
representative subject) was induced during either knee extension (elastic loading) or flexion (inertial). Joint kinematics were
reported in the bone embedded reference frames as adapted from (Sheehan, 2007b) and used in (Westphal, et al., 2012).
The bone origins were placed on a sagittal oblique plane oriented along the shaft of the femur and midway through the
patella. The femur origin was placed in the intercondylar notch and most inferior point. The tibia origin placed on the middle
of the tibial plateau. The patellar origin positioned on the most posterior, inferior point of the bone. The y axes of the femur
and tibia were oriented along the long-axis of the bones and the patellar y axis along the posterior edge of the bone. The
medial-lateral axis of the femur connected the most posterior points of the femoral condyles in an axial image, with the tibia
given the same axis. The medial-lateral axis of the patella was also defined using the most medial and lateral points of the

bone in an axial image.
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Static MR images of the knee were collected using an IDEAL sequence (pixel size of 0.39 x 0.39
mm) (Reeder, et al., 2007), which produced four image data sets: fat, water, in-phase, and out-of-phase
images. These static images were segmented (3D Slicer, Isomics, Inc., Cambridge, MA) to create subject-
specific representations of the distal femur, proximal tibia, and patella (Gering, et al., 1999; Pieper, et
al., 2005; Pieper, et al., 2006). The origin and insertions of the patella tendon were manually identified in
these images in order to locate the local position of these points in the patella and tibia, respectively.

We computed the time-varying position and orientation of the finite helical axis (FHA) of the
tibia relative to the femur assuming rigid body transformations (Berme, et al., 1990; Spoor and
Veldpaus, 1980). The FHA was computed for every 5 deg increment in knee flexion. To quantify how the
FHA changes under load, the intersection point of the FHA with the femoral xy plane was calculated
(Sheehan, 2007b).

Using Eq 3, the patellar tendon moment arm was determined as the shortest distance between
the patellar tendon line of action and the FHA (Sheehan, 2007a).

moment arm=|7°Q. (@FT x afH4)| Eq8

2 is a position vector from any point O on the FHA to any point Q on the patellar

In this equation, r°
tendon line of action, u” a unit vector along the patellar tendon line of action, and u™™ a unit vector
along the FHA.

A two-tailed paired t-test was used to compare the moment arms, and the anterior and

superior position of the FHA on the femoral xy plane between elastic and inertial loading conditions.



48

Dynamic Simulation

The muscle-actuated lower extremity model was used to simulate knee flexion-extension tasks
that were imaged. In these simulations, a time-varying external force was directly applied to the distal
tibia to emulate the external loads acting on the lower limb in the elastic and inertial loading conditions.
In the elastic case, a posterior tibia force linearly increased with knee extension (Figure 33). In the
inertial case, the anterior tibia force linearly decreased with knee flexion (Figure 33). The elastic and
inertial loads induced quadriceps activity in extension and flexion, respectively, which was consistent
with what was seen experimentally.

A computed muscle control algorithm (CMC) was used to determine muscle excitations that
drove the model to track a sinusoidal (0.5 Hz) knee flexion trajectory that oscillated between 5 and 45
deg of knee flexion (Thelen and Anderson, 2006b). Pelvis position, pelvic tilt (90 deg posterior), and hip
flexion (20 deg) were prescribed in the simulations, reflecting the external support provided in the
experimental setup (Figure 32). Ankle dorsiflexion was actively controlled by the muscles to track a
desired fixed value (30 deg). At each time step in a simulation, the CMC controller computes the
difference between desired and simulated generalized coordinates and speeds associated with knee
flexion and ankle dorsiflexion. Based on current tracking errors, a desired set of generalized
accelerations are then computed. CMC then determines a set of muscle forces that would produce the
desired joint accelerations while minimizing a cost function to resolve muscle redundancy. The cost
function used was the sum of muscle volume-weighted squared activations (Happee, 1994). Muscle-
tendon acutators were represented by Hill-type models which accounted for activation dynamics and
tendon elasticity (Zajac, 1989). Muscle excitations were computed from the desired muscle forces by
inverting the activation and contraction dynamics properties of each muscle (Thelen and Anderson,
2006b). Note that CMC was only used to track knee flexion and ankle dorsiflexion, such that the other

five dof at the tibiofemoral joint and the patella translation were predicted (Figure 33). The resulting
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tibiofemoral and patellofemoral kinematics were filtered using a zero-lag low-pass second-order
Butterworth filter with a cutoff frequency of 6 Hz (Lloyd and Besier, 2003) and subsequently used to

calculate the FHA and patellar tendon moment arm.
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Figure 33: Forward dynamics and joint mechanics models were integrated simultaneously when simulating the motion.
Sensitivity Analysis
The influence of quadriceps loading and ligament properties on the kinematics was assessed by
running simulations of both the elastic and inertial loading conditions while sequentially varying the
reference strain and stiffness properties of each bundle of ligaments. Ligament reference strains were
increased by 0.01 and ligament stiffnesses was doubled in the sensitivity analyses (Wismans, et al.,
1980). The kinematics obtained from the nominal simulation was subtracted from those obtained in

each perturbed simulation.
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Results

Tracking

The simulations were able to track the desired knee flexion angle with absolute errors averaging
less than 2 deg over the motion cycle. Simulated quadriceps activities were consistent with experimental
measures. Elastic loading induced maximum quadriceps activity slightly before peak knee extension. The

inertial loading induced maximum quadriceps activity slightly after peak knee flexion (Figure 34).
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Figure 34: (top) The simulations were able to track the prescribed flexion angle. (middle, bottom) The vastus lateralis

activation patterns induced in the simulations were comparable to measured EMG.
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Kinematics

Experimentally, we observed distinct differences in secondary tibiofemoral and patellofemoral
kinematics between elastic and inertial loading conditions. Notably, the inertial loading induced greater
superior patella translation (2.5 mm) and anterior tibia translation (3.5 mm) in a flexed posture, which
acted to reduce the overall excursion over a motion cycle by 5.7 and 5.0 mm, respectively (Figure 35).
Similar load-dependent differences in joint translations were evident in the model. The model predicted
greater superior patella translation by 0.9 mm and anterior translation by 2.2 mm in a flexed posture,
thus decreasing the overall excursion by 1.7 and 1.9 mm, respectively. Experimentally, we did not
observe load-dependent differences in axial tibiofemoral rotation (Westphal, et al., 2012). There were
slight differences in axial tibia rotation predicted by the model, with quadriceps loading inducing a shift

towards internal rotation at both flexed and extended positions.
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Figure 35: Both in vivo data and model predictions show quadriceps loading to induce a superior patella and an anterior
tibia. The bar plots show how the excursion (extended measure minus flexed measure) changes between the loading

conditions.
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Finite Helical Axis

The orientation of the tibiofemoral finite helical axis was mainly in the medial-lateral direction
of the femur (Figure 36). At extended angles during the flexion cycle, in vivo quadriceps loading caused
greater external rotation component in the FHA orientation. This is reflected in the slopes of the
kinematic curves (Figure 35). As the tibia flexes from 15 to 20 deg, the tibia axially rotates from -0.5 to -
0.8 deg in the elastic case and rotates from -0.6 to -0.1 deg in the inertial case. In the model, quadriceps

loading caused an internal rotation component in the FHA orientation with both flexion and extension.
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Figure 36: Components of a unit vector along the tibiofemoral finite helical axis, expressed in the femur reference frame.

Statistical significance of p < 0.05 is denoted as *.
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Experimentally, we observed a significant effect of loading condition on the location of the finite

helical axis. Both the model and experiment predict a maximum superior shift by 20 and 21 mm,

respectively, in the elastic loading condition (Figure 37). However, the model predicts the elastic

condition to be anteriorly shifted by 10 mm and the experiment posteriorly by 13 mm.
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Patellar Tendon Moment Arms

flexed postures, the patellar tendon moment arms were significantly reduced by 11 to 18 mm with
quadriceps loading (Figure 38). The model also predicted a reduction in the patellar tendon moment

arms in the inertial loading case, but the magnitude of differences (up to 7 mm) were not as great as

that seen experimentally (Figure 38).
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Figure 38: The patellar tendon moment was larger in the elastic loading condition, seen both in vivo and predicted by the
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Sensitivity

The influence of ligament properties on secondary knee kinematics was load-dependent. As
expected, superior patella translation was most dependent on the patellar tendon but was also affected
by the ACL in extension. Anterior tibia translation was most dependent on the ACL in extended postures.
In flexed postures, anterior tibia translation was most dependent on the deep MCL in the inertial case
but more dependent on the PCL in the elastic case. Internal tibia rotation was dependent on the deep
MCL and LCL/PFL at more flexed angles. At extended angles, axial rotation was influenced by the

LCL/PFL, deep MCL, and superior MCL (Figure 39).
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Figure 39: The difference in kinematics (nominal subtracted from perturbed model) seen when ligament properties in the

model were changed (reference strain increased by 0.01 and stiffness doubled).
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Discussion

This study compared model predictions of knee kinematics to in vivo measures obtained with
dynamic imaging. The results clearly show the strong influence that the timing of quadriceps loading can
have on secondary tibiofemoral kinematics, patellofemoral motion, and the patellar tendon moment
arm. Such load-dependent effects can alter the lines of action and moment generating capacities of
muscles about the knee, and thus might be important to incorporate in muscle-actuated simulations of
movement.

Consistent with in vivo data, the model was able to predict a reduction in anterior-posterior tibia
translation and superior-inferior patella translation when quadriceps loading occurred in a flexed knee
posture. Not seen experimentally, the model predicted quadriceps loading to induce internal rotation.
However, the model is consistent with previous studies using ex vivo cadaveric setups to investigate
quadriceps function (Hirokawa, et al., 1992; Li, et al., 1999).

Both the model and in vivo results show a diminished patellar tendon moment arm with the
inertial load. However, the model under predicts the amount the moment arm is reduced. This may be
due to the disagreement of the model and in vivo results of the anterior-posterior location of the FHA.
Both show a superior shift in the elastic FHA, which would increase the moment arm of the patellar
tendon. A posterior shift would increase the moment arm further, as seen in vivo, but the anterior shift
seen in the model would act to decrease the moment arm.

The passive screw-home mechanism of the knee is internal rotation with flexion (Wilson, et al.,
2000). At extended angles during the flexion cycle, in vivo quadriceps loading caused greater external
rotation, which differs from the passive screw-home mechanism. In the model, quadriceps loading
caused internal rotation with flexion (consistent with passive screw home mechanism) and extension
(not consistent with passive screw home mechanism). This suggests the screw home mechanism is load-

dependent.
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The ligament sensitivity results seen in the model are generally consistent with prior serial
dissection studies. According to a review by Masouros, anterior-posterior translation is mainly
restrained by the cruciate ligaments with secondary restraints attributable to the MCL (Masouros, et al.,
2010). Axial rotation is mostly modulated by the MCL, LCL, and posterior capsule, with the role of the
LCL diminishing at more flexed postures (Masouros, et al., 2010). Similarly in our model, anterior-
posterior translation was affected by cruciate properties as well as the MCL. Axial rotation was affected
by the properties of the posterior capsule, LCL/PFL, and MCL, with the LCL/PFL not diminishing with
flexion. A unique observation of the current study is that these postural-dependencies also vary with
loading conditions. For example, we predicted much less influence of the posterior cruciate ligament
(PCL) on posterior tibial translation when the quadriceps were loaded in flexion. The PCL became taut at
about 30 deg of knee flexion, such that quadriceps loading in these postures would act to unload the
PCL and hence lessen its influence on secondary motion. The model also suggests the MCL had greater
influence on internal rotation when the quadriceps were loaded in flexion, while the LCL/PFL had
greater influence when the quadriceps were unloaded in flexion. When the quadriceps were loaded in
flexion, the anterior position of the tibia decreased the stretch of the PFL, thus decreasing its ability to
restrain axial motion.

Many models assume the patellar tendon to be inextensible (Arnold, et al., 2010; Shelburne, et
al., 2006) and thus would not predict a load-dependence in patellofemoral kinematics as seen in Figure
35. Our model suggests a 1.7 mm change in patellar excursion between our two loading conditions. Thus
patellar tendon stretch may be important to consider when investigating the causes of patellofemoral
pathologies since the degree of superior patella translation can influence where the patella resides
along the trochlear groove.

The model predicted a smaller change in patellar excursion compared to the in vivo results. This

may be due to the femoral geometry. The average epicondylar width was 84 mm for the in vivo subjects
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and 87 mm in the model. This would cause the patella to be more posterior in vivo, thus changing the
patellar tendon line of action to be more superior-inferiorly aligned. Therefore, even though the force in
the patellar tendon may be the same in the model and in vivo, the in vivo patellar tendon has a greater
superior-inferior component and hence a greater influence on the superior-inferior motion of the
patellofemoral joint.

The load-dependent variations in kinematics we measured are likely functionally relevant. Peak
knee extension moments in these experiments averaged from 23-33 Nm (Westphal, et al., 2012), which
is comparable to that seen at the knee during the load acceptance phase of walking. The timing of
guadriceps loading in the inertial condition better reflects patterns seen in locomotion activities. During
both walking and running, the quadriceps undergo lengthening contractions during the load-acceptance
phase with peak quadriceps loading coinciding relatively closely with peak stance phase knee flexion
angle. The fact that the patellar tendon moment arm is somewhat diminished under these loading
conditions could necessitate greater patellar tendon forces than would be estimated using a knee model
that does not account for load-dependent changes.

There are some limitations to consider in our knee model. We represented the ligaments as
spring elements, rather than deformable 3D representations that account for spatial variations in strain.
In addition, the medial and lateral tibia plateaus were represented by posteriorly sloped planes when
computing cartilage contact forces at the tibiofemoral joint. A one dof patellofemoral joint allowed for
patella glide to occur as a result of patellar tendon stretch but did not allow for medio-lateral translation
and tilt. Both of these choices were made for computational reasons since the simplified ligament and
cartilage loading models could be more efficiently solved within the context of whole body movement.
Since the main functions of the menisci are not to restrain motion, menisci were not included in the

model (Aagaard and Verdonk, 1999; Messner and Gao, 1998).
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Despite the limitations, we believe this study demonstrates the relevance and potential for
simulating six degree of freedom tibiofemoral kinematics during human gait. Most current gait models
utilize a simplified kinematic knee model, in which it is assumed that patellofemoral kinematics and
secondary tibiofemoral kinematics can be expressed as constrained functions of knee flexion (Arnold, et
al., 2010). While simulated muscle forces can be subsequently applied to a deformable knee model (e.g.
(Shelburne, et al., 2006)), such a serial formulation inherently disconnects the affect that variations in
secondary knee kinematics could have on muscle actions. This study clearly demonstrates that load-
dependent behavior is evident in intact healthy knees and is likely even more important to consider in
pathological cases where injury can alter joint laxity and surgery can alter the properties of both
reconstructed and donor tissues. These effects are particularly relevant when using models to
characterize the location and magnitude of articular cartilage loading. The formulation we used in this
study co-simulates movement dynamics at the whole body level and tissue loading and deformation at
the joint level. Such a co-simulation framework provides simultaneous estimates of movement
kinematics as well as cartilage, ligament, and muscle loading which is highly relevant to understand knee

mechanics function in both healthy and pathological states.
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Chapter 5: The Effect of Joint Laxity on
Knee Mechanics during Gait

Introduction

A serial modeling approach is typically used to estimate soft tissue loading and secondary joint
kinematics during gait. In this approach a dynamic multibody model of the musculoskeletal system is
first used to calculate muscle forces (Anderson and Pandy, 2003; Buchanan, et al., 2005), which are then
applied as boundary conditions to a detailed joint model to solve for soft tissue strains, stresses, and
secondary joint kinematics (Besier, et al., 2005; Fernandez and Pandy, 2006). This method could be used
to investigate how secondary kinematics affect cartilage contact locations in the ACLd knee as well as
how cartilage loading changes, but there are inherent assumptions that limit its predictive capabilities.
The multibody dynamic models typically represent the knee as a kinematic constraint that does not vary
with loading (Arnold, et al., 2010; Delp, et al., 1990). The tibiofemoral joint has been shown to exhibit
load-dependent behavior during gait with internal tibia rotation varying substantially between early
stance, late stance, and terminal swing (Andriacchi and Dyrby, 2005; Lafortune, et al., 1992). This load-
dependent behavior of the knee may be more exaggerated in some pathological conditions, like the
ACL-d knee. Laxity could alter both the line of action and the moment arms of the muscles, thereby
affecting its capacity to generate joint moments and accelerations. A serial simulation assumes such
effects are negligible, and hence that muscle forces are not dependent on joint laxity. Clinically, there
has long been an interest in the use of muscle recruitment to compensate for excessive laxity, with a
number of studies investigating the use of quadriceps avoidance and hamstring facilitation to
compensate for ACLd. Variations in muscle recruitment would alter muscle forces, which are a large

determinant of cartilage contact loads (Costigan, et al., 2002; Kuster, et al., 1997; Pandy and Andriacchi,
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2010). It is thus important to consider how including joint laxity in musculoskeletal simulations of gait
can alter soft tissue and joint loading.

Some recent biomechanical studies have introduced new approaches to address the
computational challenge of considering contact and soft tissue loads within the context of whole body
movement. For example, (Halloran, et al., 2009) calculated neuromuscular control needed to optimize
jump height while minimizing stress patterns within a finite element model of the foot. The large
computational cost of solving a finite element model at every time step within a dynamic simulation was
circumvented by development of a surrogate model. However, numerical dynamic optimization was
used which necessitated large computation time even when simulating with a 2D model. (Lin, et al.,
2010) showed that the consideration of knee articular cartilage contact forces can substantially alter
muscle force predictions during gait. However, only an inverse analysis approach was used such that one
could not simulate unique movement patterns. Our approach is to simulate tibiofemoral mechanics
within the context of an actively controlled muscle-actuated simulation of gait. Specifically, we used a
feedforward-feedback control scheme, termed computed muscle control (CMC), to modulate muscle
excitations to drive the model to track desired flexion at the knee (Thelen and Anderson, 2006a), with
the model then predicting secondary tibiofemoral motions based on evolving cartilage contact,
ligament, and muscle forces.

The first objective of this study was to investigate how simulations of secondary kinematics,
knee extensor mechanics, and quadriceps loading differ when simulating gait with a knee that exhibits
laxity versus a kinematic assumption for joint mechanics. We hypothesize that in comparison with
traditional kinematic knee formulations, the models with joint laxity will exhibit an anteriorly translated
and internally rotated tibia when the quadriceps are loaded during weight acceptance. We further
hypothesize that this change in kinematics will affect the moment arm of the patellar tendon about the

knee and thus alter quadriceps load estimates. The second objective of this study was to use the
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modeling framework to investigate how an injury-induced increase in joint laxity (due to ACL deficiency)
could alter secondary tibiofemoral kinematics and cartilage contact patterns. We hypothesize that ACL-
deficiency alters tibiofemoral kinematics in a way that shifts tibia cartilage contact locations in the ACLd

knee posteriorly.

Methods

Musculoskeletal Model

A musculoskeletal model of the lower limb was developed that incorporated ligaments and
tibiofermoal cartilage contact (Chapter 3). We started with a generic model that included 44
musculotendons acting about the hip, knee, and ankle joints (see Appendix B) (Arnold, et al., 2010). The
one degree of freedom (dof) knee in the model was replaced by a six dof tibiofemoral joint (Shelburne,
et al.,, 2006; Shin, et al., 2007) and a one dof patellofemoral joint (Figure 40) with bone embedded
reference frames consistent with (Arnold, et al., 2010). Nineteen ligament bundles were represented
including the MCL (5 bundles), LCL (1 bundle), popliteofibular ligament (1 bundle), ACL (2 bundles), PCL
(2 bundles), posterior capsule (4 bundles), iliotibial band (ITB), and patellar tendon (3 bundles). Each
ligament was represented as a nonlinear spring with origins and insertions based on (Shelburne, et al.,
2006) and wrapping about the femoral condyles accounted for. The geometry of the distal femur and
cartilage was segmented from high resolution MRI images of a young male knee with average femoral
geometry. The medial and lateral tibia plateaus were modeled as planes with posterior slopes of 2 and 7
deg, respectively (Shelburne, et al., 2006). Tibiofemoral contact forces were computed via an elastic
foundation model (Shelburne, et al., 2006). The one dof patellofemoral joint allowed for the patella to
translate within a constrained path relative to the femur, subject to quadriceps and patellar tendon
forces acting on either end. The reference strains and stiffness values of the ligaments were adapted

from the literature (Shelburne, et al., 2006; Shin, et al., 2007), with a minimal amount of tuning to
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ensure the model replicated literature measures of passive motion, anterior-posterior stiffness, and

axial rotational tibiofemoral stiffness.

Figure 40: Knee model with cartilage contact and ligamentous restraints.

Gait Simulation

The model was used to simulate knee motion and loading during gait. To do this, a computed
muscle control (CMC, see Appendix C) (Thelen and Anderson, 2006a) algorithm was used to determine
muscle excitations that drive the model to track normal hip, knee, and ankle flexion throughout a
normative gait cycle (average velocity 1.47 m/s). During the simulation, measured ground reaction
forces were directly applied to the feet while pelvis and non-sagittal hip kinematics were prescribed to
follow measured trajectories. We generated gait simulations using three different knee representations:
a 1 degree of freedom knee, an intact knee with a 6 dof tibiofemoral joint and 1 dof patellofemoral joint,
and an ACLd knee where both ACL bundles were removed from the intact knee model. For the kinematic
knee, the tibiofemoral translations, non-sagittal rotations, and patellofemoral motion were set to
constrained functions of the knee flexion angle (Arnold, et al., 2010). The kinematic constraint functions

were determined by passively flexing and extending the intact knee model and then using piecewise
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cubic spline functions to describe the tibiofemoral translations, non-sagittal tibiofemoral rotations, and

patella translation as a function of knee flexion (Figure 41).
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Note that for the intact and ACLd knee, CMC was only used to track flexion such that the other
five dof at the tibiofemoral joint and the patella translation evolved as a result of muscle, ligament, and

cartilage contact forces (Figure 42).
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predictions of muscle forces, ligament loads, cartilage contact, and secondary knee kinematics.

For each simulation, the resulting kinematics were lowpass filtered at 6 Hz with a second-order
Butterworth filter (Lloyd and Besier, 2003). The tibiofemoral kinematics were used to compute the
tibiofemoral finite helical axis (Berme, et al., 1990; Spoor and Veldpaus, 1980) and patellar tendon
moment arm (Sheehan, 2007a) during distinct phases of the gait cycle. During load acceptance, the
position of the tibia at 0% (heel contact) and 16% (peak stance knee flexion angle) of the gait cycle were
used to determine the FHA and patellar tendon moment arm at 8%. To compute the FHA and patellar
tendon during midstance, 16% and 40% (maximum knee extension angle) were used. Terminal stance
was defined as 40% to 55% (opposite heel strike). 55% to 60% (toe-off) was pre-swing. Initial swing was
comprised of 60% to 75% (maximum knee flexion angle). Mid-swing was set at 75% to 90% (when the

tibia was vertical). Terminal swing was defined as 90% to 100% (heel strike).
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Results

Muscle Excitation Patterns

Simulated excitation patterns were generally consistent with the timing of normative EMG
patterns reported by (Winter, 1987) for each of the gait simulations considered. Notably, the models
predicted semitendinosus activity during load acceptance, peak quadriceps activity during load
acceptance and midstance, tibialis anterior activity just after heel strike, and soleus activity during

terminal stance and pre-swing (Figure 43).
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Effects of Joint Laxity on Knee Kinematics

All models were able to closely track normative knee flexion-extension patterns during gait
(Figure 44). However, there were distinct differences in secondary tibiofemoral kinematics during
stance, with the greatest variations arising in tibia translation and internal tibia rotation. During the
beginning of stance, the intact knee model exhibited greater peak internal tibia rotation (4 deg), anterior
tibia translation (5mm), and lateral translation (2 mm) than was assumed in the kinematic knee model.
The axial rotation patterns of the intact knee was generally consistent with that directly measured using
bone pins (Lafortune, et al., 1992), with peak internal rotation occurring during pre-swing, as opposed to
swing phase in the kinematic knee. Compared to the intact model, anterior tibia translation and internal

tibia rotation were exaggerated by 11 mm and 1deg, respectively, in the ACLd model.
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these effects were more exaggerated in the ACLd model.
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During beginning stance, the orientation of the FHA was mostly in the medial-lateral direction
(Figure 45). Slight differences were seen between the models in the ab/adduction component when the

guadriceps were loaded.
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During initial stance, joint laxity shifted the finite helical axis inferiorly. This inferior shift was
accompanied by a diminished patellar tendon moment arm by up to 6 mm in the joints with laxity,

compared to the kinematic joint assumption (Figure 46).
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The forces in the ligaments were similar between the intact and ACLd model except during peak
quadriceps activity where the ACLd knee showed a slight increase in the patellar tendon force (Figure

47). Notice that the kinematic model is not included since it did not contain ligaments.
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Compared to the kinematic assumption, the models with laxity predicted larger peak quadriceps
loading in the vastus lateralis by 74 N (intact) and 14 N (ACLd) as well as in the rectus femoris by 163 N
(intact) and 314 N (ACLd). At peak quadriceps loading, the model without the ACL showed a lower vastus
lateralis force (60 N) as well as higher forces in the rectus femoris force (163 N), semimembranosus (20

N), semitendinosus (23 N), and biceps femoris long head (16 N), compared to the intact model.
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Figure 48: The models with joint laxity predicted a larger peak quadriceps force during initial stance.
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Cartilage Contact

The intact model predicted greater excursion of cartilage contact on the lateral tibia plateau (32
mm) than the medial plateau (14 mm). Similar cartilage contact excursion magnitudes are observed in
the ACLd knee, but the cartilage contact is shifted posteriorly by an average of 5 and 4.5 mm on the
medial and lateral tibial plateau, respectively. There was also a lateral shift in the cartilage contact in the

ACLd model of 2.5 mm that arose from a medial shift in the tibia that persisted throughout stance

(Figure 49).
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The model predicted net cartilage loading patterns that compare well to direct in vivo measures
obtained with instrumented total knee replacements (Figure 50) (Fregly, et al., 2012). In the intact knee,
peak loads were 3 times body weight (BW) during load acceptance and late swing phases of gait. Lateral
and medial tibia plateau contact peaked at 2 and 2.5 times bodyweight during the load acceptance
phase, respectively. Tibia plateau load magnitudes were generally similar in the ACLd knee model, with

only a small (0.2BW = 147 N) increase in medial plateau loading in the load acceptance phase of gait.
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slight increased lateral compartment loading after heel strike.
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Discussion

Co-simulation is an important computational tool that can be used to predict soft tissue loading
within the context of whole body movement. In this study, we used a co-simulation framework to
investigate how normal and pathological joint laxity could affect muscle force and cartilage load
predictions during gait. Our results show that a model with normal knee laxity predicts tibiofemoral
kinematic patterns that differ markedly from the passive envelope of motion (Blankevoort, et al., 1988),
but are generally consistent with direct in vivo measures during gait (Lafortune, et al., 1992). We show
that these altered tibiofemoral kinematics can diminish the patellar tendon moment arm and hence
necessitate an increase in vastii and rectus femoris loading from what would be assumed with
traditional gait models. Simulating gait with an ACL deficient knee resulted in substantial changes in
tibiofemoral kinematics that moved tibia cartilage contact posteriorly. Hence, the co-simulation
modeling framework provides a powerful consistent approach of assessing how neural and mechanical
factors can affect knee soft tissue loading, which is important for investigating the causes and
treatments of knee injuries.

The models with laxity predicted larger quadriceps forces than the kinematic model. This is due
to the change in patellar tendon moment arm between the models. Joint laxity diminished the capacity
of the patellar tendon to generate an extension torque, therefore the vastii and rectus femoris forces
were increased to compensate and produce the same flexion/extension moment. This highlights the
importance of considering the effect of load-dependent changes in knee kinematics on soft tissue
loading, which is not considered in gait simulation models that utilize kinematic knees (Fernandez and
Pandy, 2006; Shelburne, et al., 2005a).

Compared to the intact model, the ACLd joint exhibited increased anterior translation and

internal rotation, which agrees with the literature (Georgoulis, et al., 2003; Masouros, et al., 2010;
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Shelburne, et al., 2005a). These kinematic changes resulted in a posterior and lateral shift of the
cartilage contact locations in the ACLd knee, which agrees with (Li, et al., 2006). Li highlighted the
importance of the lateral shift, suggesting that this may cause contact between the femur and medial
tibial spine, a site of osteophyte formation in ACLd patients (Li, et al., 2006). However, the limited tibial
geometry used in our model cannot be used to investigate this further.

The ACLd model also showed an increase in hamstring force, which is in agreement with the
findings of (Beard, et al., 1996; Berchuck, et al., 1990) using EMG. A slight decrease in vastii loading of
the ACLd model was also observed, which is consistent with the idea of quadriceps avoidance (Alkjaer,
et al., 2003; Berchuck, et al., 1990). However, the ACLd model predicted a simultaneous increase in
rectus femoris force.

Cartilage loading slightly increased in the medial compartment of the ACLd knee, which is
consistent with osteoarthritis developing mostly in the medial compartment (Vincent, et al., 2012).
However, this is often explained by the knee adduction moment of the ground reaction force (Vincent,
et al., 2012). Our framework provides a direct estimation without the need for this surrogate measure
and suggests changes in muscle forces after ligament injury may be more important to cartilage loading
than previously thought.

Compared to an intact knee, the ACLd knee has been shown to exhibit increased knee flexion
angles during gait, which we did not account for in this study (Devita, et al., 1997). We did this to isolate
the effect of joint laxity on muscle forces. Chapter 3 and 4 discuss the limitations of the model (i.e. no
menisci, planar tibial plateaus). A limitation of the CMC approach is that we only considered one
possibility of muscle force distribution and assumed that both populations, the intact and ACLd, used
the same cost function.

This is the first the first study to use a modified CMC algorithm to co-simulate soft tissue loads

and musculoskeletal dynamics during gait. This study shows that accounting for these knee mechanics is
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important when predicting secondary joint kinematics and muscle forces, especially in cases of ligament
injury. This framework provides a powerful tool to study how ligament surgeries and injuries lead to

long-term complications (e.g. osteoarthritis) and to investigate the effectiveness of treatment strategies.
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Chapter 6: Conclusion

Musculoskeletal simulations of gait are commonly used to estimate soft tissue loads such as
muscle forces and ligament strains and stresses. Typically, muscle forces are calculated using a simplified
knee joint model that behaves independently of load. These muscle forces are then used as boundary
conditions for a more detailed joint model to compute soft tissue loads. However, we have shown in
vivo knee kinematics and extensor function are load-dependent in physiological loading conditions
(Chapter 4). By simultaneously solving for muscle forces and soft tissue loads, we developed a co-
simulation framework to predict the load-dependence of knee mechanics as seen in vivo.

The co-simulation framework was used to assess how the load-dependent behavior of the knee
affects predicted muscle forces during gait simulations. The kinematic joint assumption under predicted
quadriceps forces during the weight-acceptance phase of gait (Chapter 5) and cannot predict alterations
in muscle forces that arise from varying laxity. This is important to consider clinically. The ACLd model
showed a large increase in rectus femoris force from the intact model and a slight increase in medial
cartilage contact loading. We also predicted ACL-deficiency to change cartilage loading locations
posteriorly and medially. These predictions of cartilage loading are consistent with the initiation of
osteoarthritis (Andriacchi, et al., 2004; Chaudhari, et al., 2008; Vincent, et al., 2012).

Overall, we have shown the kinematic joint assumption does not represent in vivo behavior and
introduces errors into model predictions of muscle force, kinematics, and knee extensor function. To
overcome this, we have developed a co-simulation framework that incorporates the load-dependent
behavior of the knee while solving for muscle forces. This provides a powerful tool to evaluate the
effectiveness of rehabilitation strategies and treatment. For example, what muscle patterns could be
used to reduce anterior translation in the ACLd knee and possibly avoid surgery? This framework could

also be used to optimize surgical parameters to restore normal joint function after injury. For example, it
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provides insight on how to make surgical decisions such as what the best tunnel placement is for a single
bundle ACL reconstruction to restore normal cartilage loading. However, before surgery can be
simulated, further work should be done to refine the knee model. This would include adding a detailed
description of the tibial articular geometry and patellofemoral joint along with ligament wrapping about
the bones and incorporation of menisci. Also, it is important to understand how model predictions are
influenced by parameters set in the model (e.g. ligament properties, cartilage properties, geometry,
etc.). Therefore, it would be useful to use a Monte Carlo analysis to investigate how uncertainties in

model parameters propagate to model predictions.
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Appendix A: Ligament Properties

Ligaments have been modeled as nonlinear springs (Figure 51) in mathematical joint models.
This appendix summarizes values used for stiffness and reference strains in the literature (Table 8
through Table 12) as well as those measured from ex vivo and in vivo studies (Table 13 through Table

19). The reference strain is the strain in the ligament when the knee is fully extended.

f=Viké*/e, 0=<e<2e¢,
f= k(e ‘.—61) €> 2¢,
f=0 €<0,

£, 28, ¢

Figure 51: Figure from (Blankevoort and Huiskes, 1991). Ligaments were modeled with a nonlinear force (f) — strain (g) curve.
g, is the transition strain, € the current ligament strain calculated from zero-load length and current length, k the ligament

stiffness, and f the force.
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Table 8: Review of ACL bundles and properties used in mathematical knee models

Bundle Stiffness (N) Reference Strain (-)
aACL 1000 (Shelburne, et al., 2011; Shelburne, et  0.093 (Shelburne, et al., 2011; Shelburne,
al., 2004; Shelburne, et al., 2006) et al., 2004; Shelburne, et al., 2006)
5000 (Amiri, et al., 2006; Blankevoort and 0.06 (Blankevoort and Huiskes, 1991;
Huiskes, 1991; Blankevoort and Huiskes, Blankevoort, et al., 1991b)
1996; Blankevoort, et al., 1991b) 0.02 (Kim, 1996; Pandy, et al., 1997;
1500 (Kim, 1996; Pandy, et al., 1997; Shelburne and Pandy, 1997; Shelburne
Shelburne and Pandy, 1997; Shelburne and  and Pandy, 2002; Shin, et al., 2007)
Pandy, 2002) 0.031 (Amiri, et al., 2006)
3803 (Shin, et al., 2007) 0 (Abdel-Rahman and Hefzy, 1998)
pACL 1500 (Shelburne, et al., 2011; Shelburne, et 0.083 (Shelburne, et al., 2011; Shelburne,
al., 2004; Shelburne, et al., 2006) et al., 2004; Shelburne, et al., 2006)
5000 (Amiri, et al., 2006; Blankevoort and 0.1 (Blankevoort and Huiskes, 1991;
Huiskes, 1991; Blankevoort and Huiskes, Blankevoort, et al., 1991b)
1996; Blankevoort, et al., 1991b) 0.02 (Kim, 1996; Shelburne and Pandy,
1600 (Kim, 1996; Pandy, et al., 1997, 1997; Shelburne and Pandy, 2002; Shin,
Shelburne and Pandy, 1997; Shelburne and et al., 2007)
Pandy, 2002) 0.01 (Pandy, et al., 1997)
3738 (Shin, et al., 2007) 0.012 (Amiri, et al., 2006)
0.051 (Abdel-Rahman and Hefzy, 1998)
1 bundle 3041 (Trent, et al., 1976) 0.05 (Wismans, et al., 1980)
3000 (Wismans, 1980)
7200 (Andriacchi, et al., 1983)
10 bundles 5000 (for each bundle) (Amiri, et al., 2007) aACL: 0, 0.15, 0, O (Amiri, et al., 2007)

iACL: 0.15, 0, O (Amiri, et al., 2007)
pACL: 0.15, 0, 0.15 (Amiri, et al., 2007)
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Table 9: Review of PCL bundles and properties used in mathematical knee models

Bundle Stiffness (N) Reference Strain (-)

aPCL 2600 (Kim, 1996; Pandy, et al., 1997; -0.39 (Shelburne, et al., 2011; Shelburne,
Shelburne, et al., 2011; Shelburne and et al., 2004; Shelburne, et al., 2006)
Pandy, 1997; Shelburne and Pandy, 2002; -0.24 (Blankevoort and Huiskes, 1991;
Shelburne, et al., 2004; Shelburne, et al., Blankevoort, et al., 1991b)
2006) -0.21 (Kim, 1996; Shelburne and Pandy,
9000 (Amiri, et al., 2006; Blankevoort and 1997; Shelburne and Pandy, 2002)
Huiskes, 1991; Blankevoort and Huiskes, -0.23 (Pandy, et al., 1997)
1996; Blankevoort, et al., 1991b) -0.1 (Amiri, et al., 2006; Shin, et al., 2007)
4348 (Shin, et al., 2007) 0.004 (Abdel-Rahman and Hefzy, 1998)

pPCL 1900 (Kim, 1996; Pandy, et al., 1997 -0.12 (Shelburne, et al., 2011; Shelburne,
Shelburne, et al., 2011; Shelburne and et al., 2004; Shelburne, et al., 2006)
Pandy, 1997; Shelburne and Pandy, 2002; -0.03 (Blankevoort and Huiskes, 1991;
Shelburne, et al., 2004; Shelburne, et al., Blankevoort, et al., 1991b)
2006) 0.02 (Kim, 1996; Pandy, et al., 1997,
9000 (Amiri, et al., 2006; Blankevoort and Shelburne and Pandy, 1997; Shelburne
Huiskes, 1991; Blankevoort and Huiskes, and Pandy, 2002)
1996; Blankevoort, et al., 1991b) -0.1 (Amiri, et al., 2006)
1580 (Shin, et al., 2007) 0.05 (Abdel-Rahman and Hefzy, 1998)

-0.02 (Shin, et al., 2007)

1 bundle 4483 (Trent, et al., 1976) -0.01 (Wismans, et al., 1980)
4500 (Wismans, 1980)
14300 (Andriacchi, et al., 1983)

9 bundles 9000 (for each bundle) (Amiri, et al., 2007) aPCL: -0.05, -0.05, -0.05 (Amiri, et al.,

2007)
iPCL: -0.05, -0.057, -0.05 (Amiri, et al.,
2007)
pPCL: -0.063 -0.237, -0.1 (Amiri, et al.,
2007)
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Table 10: Review of MCL bundles and properties used in mathematical knee models

Bundle Stiffness (N) Reference Strain (-)

aMCL 2500 (Kim, 1996; Pandy, et al., 1997; -0.017 (Shelburne, et al., 2011;
Shelburne, et al., 2011; Shelburne and Shelburne, et al., 2004; Shelburne, et al.,
Pandy, 1997; Shelburne and Pandy, 2002; 2006)
Shelburne, et al., 2004; Shelburne, et al., 0.04 (Blankevoort and Huiskes, 1991;
2006) Blankevoort, et al., 1991b)
2750 (Blankevoort and Huiskes, 1991; 0.02 (Shelburne and Pandy, 1997;
Blankevoort and Huiskes, 1996; Shelburne and Pandy, 2002)
Blankevoort, et al., 1991b) 0.05 (Kim, 1996)

cMCL 3000 (Kim, 1996; Pandy, et al., 1997 0.044 (Shelburne, et al., 2011; Shelburne,
Shelburne, et al., 2011; Shelburne and et al., 2004; Shelburne, et al., 2006)
Pandy, 1997; Shelburne and Pandy, 2002; 0.04 (Blankevoort and Huiskes, 1991;
Shelburne, et al., 2004; Shelburne, et al., Blankevoort, et al., 1991b; Kim, 1996;
2006) Pandy, et al., 1997; Shelburne and Pandy,
2750 (Blankevoort and Huiskes, 1991; 1997; Shelburne and Pandy, 2002)
Blankevoort and Huiskes, 1996; 0.02 (Pandy, et al., 1997)
Blankevoort, et al., 1991b)

pMCL 2500 (Kim, 1996; Pandy, et al., 1997; 0.049 (Shelburne, et al., 2011; Shelburne,
Shelburne, et al., 2011; Shelburne and et al., 2004; Shelburne, et al., 2006)
Pandy, 1997; Shelburne and Pandy, 2002; 0.03 (Blankevoort and Huiskes, 1991;
Shelburne, et al., 2004; Shelburne, et al., Blankevoort, et al., 1991b)
2006) 0.02 (Kim, 1996; Pandy, et al., 1997;
2750 (Blankevoort and Huiskes, 1991; Shelburne and Pandy, 1997; Shelburne
Blankevoort and Huiskes, 1996; and Pandy, 2002)
Blankevoort, et al., 1991b)

aCM 2000 (Kim, 1996; Pandy, et al., 1997, -0.274 (Shelburne, et al., 2011;
Shelburne, et al., 2011; Shelburne and Shelburne, et al., 2004; Shelburne, et al.,
Pandy, 1997; Shelburne and Pandy, 2002; 2006)
Shelburne, et al., 2004; Shelburne, et al., -0.08 (Kim, 1996; Pandy, et al., 1997,
2006) Shelburne and Pandy, 1997; Shelburne

and Pandy, 2002)

pCM 4500 (Kim, 1996; Pandy, et al., 1997; -0.061 (Shelburne, et al., 2011;
Shelburne, et al., 2011; Shelburne and Shelburne, et al., 2004; Shelburne, et al.,
Pandy, 1997; Shelburne and Pandy, 2002; 2006)
Shelburne, et al., 2004; Shelburne, et al., 0.03 (Kim, 1996; Pandy, et al., 1997;
2006) Shelburne and Pandy, 1997; Shelburne

and Pandy, 2002)
1 bundle 5160 (Trent, et al., 1976)

8000 (Wismans, 1980)
8200 (Andriacchi, et al., 1983)
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Bundle

Stiffness (N)

Reference Strain (-)

4 bundles

2 bundles

3 bundles

2750 (for each bundle) (Amiri, et al., 2006;
Amiri, et al., 2007)

oMCL: 742 (Shin, et al., 2007)
aMCL: 1270 (Shin, et al., 2007)
dMCL: 4201 (Shin, et al., 2007)

aMCL: 0.1 (Amiri, et al., 2007)
iMCL: 0.1, 0.1 (Amiri, et al., 2007)
pMCL: 0.1 (Amiri, et al., 2007)

pMCL: 0.05 (Amiri, et al., 2006)
aMCL: -0.04 (Amiri, et al., 2006)
oMCL: 0.031 (Amiri, et al., 2006)
dMCL: 0.049 (Amiri, et al., 2006)
AMC: -0.03 (Wismans, et al., 1980)
PMC: 0.05 (Wismans, et al., 1980)
oMCL: 0.031 (Abdel-Rahman and Hefzy,
1998)
0.02 (Shin, et al., 2007)

aMCL: 0.94 (Abdel-Rahman and Hefzy,
1998)

0.02 (Shin, et al., 2007)
dMCL: 0.049 (Abdel-Rahman and Hefzy,
1998)

0.02 (Shin, et al., 2007)
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Table 11: Review of LCL bundles and properties used in mathematical knee models

Bundle Stiffness (N) Reference Strain (-)
1 bundle 4000 (Shelburne, et al., 2011; Shelburne, et  0.056 (Shelburne, et al., 2011; Shelburne,
al., 2004; Shelburne, et al., 2006) et al., 2004; Shelburne, et al., 2006)
2000 (Amiri, et al., 2006; Kim, 1996; Pandy,  0.02 (Kim, 1996; Pandy, et al., 1997;
et al., 1997; Shelburne and Pandy, 1997, Shelburne and Pandy, 1997; Shelburne
Shelburne and Pandy, 2002) and Pandy, 2002; Shin, et al., 2007)
3051 (Trent, et al., 1976) 0.05 (Abdel-Rahman and Hefzy, 1998;
3000 (Wismans, 1980) Amiri, et al., 2006; Wismans, et al., 1980)
7300 (Andriacchi, et al., 1983)
3 bundles 2000 for each (Blankevoort and Huiskes, aLC: -0.25 (Blankevoort and Huiskes,
1991; Blankevoort and Huiskes, 1996; 1991; Blankevoort, et al., 1991b)
Blankevoort, et al., 1991b) sLC: -0.05 (Blankevoort and Huiskes,
1991; Blankevoort, et al., 1991b)
pLC: 0.08 (Blankevoort and Huiskes,
1991; Blankevoort, et al., 1991b)
4 bundles 2000 (for each bundle) (Amiri, et al., 2007) aLCL: 0.071 (Amiri, et al., 2007)

sLCL: 0.064 (Amiri, et al., 2007)
pLCL: 0.1 (Amiri, et al., 2007)
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Table 12: Review of posterior capsule bundles and properties used in mathematical knee models

Bundle Stiffness (N) Reference Strain (-)
mCap 2500 (Shelburne, et al., 2011; Shelburne, et  0.077 (Shelburne, et al., 2011; Shelburne,
al., 2004; Shelburne, et al., 2006) et al., 2004; Shelburne, et al., 2006)
1500 (Kim, 1996; Pandy, et al., 1997) 0.06 (Kim, 1996; Pandy, et al., 1997)
0.05 (Wismans, et al., 1980)
ICap 2500 (Shelburne, et al., 2011; Shelburne, et  0.064 (Shelburne, et al., 2011; Shelburne,
al., 2004; Shelburne, et al., 2006) et al., 2004; Shelburne, et al., 2006)
1500 (Kim, 1996; Pandy, et al., 1997) 0.06 (Kim, 1996; Pandy, et al., 1997)
0.05 (Wismans, et al., 1980)
2 1000 for each (Blankevoort and Huiskes, aCM: -0.18 (Blankevoort and Huiskes,
anterior/posterior 1991; Blankevoort and Huiskes, 1996; 1991; Blankevoort, et al., 1991b)
bundles Blankevoort, et al., 1991b; Wismans, 1980) pCM: -0.04 (Blankevoort and Huiskes,
1991; Blankevoort, et al., 1991b)
Posteromedial 1000 (for each bundle) (Amiri, et al., 2007) 0.1, 0.1 (Amiri, et al., 2007)
capsule (2
bundles,
anterior/posterior)
4 bundles IPC: 1300 (Amiri, et al., 2006) IPC: 0.05 (Amiri, et al., 2006)
mPC: 1300 (Amiri, et al., 2006) 0.08 (Abdel-Rahman and Hefzy,
1obIPC: 2750 (Amiri, et al., 2006) 1998)
20bIPC: 2750 (Amiri, et al., 2006) mPC: 0.05 (Amiri, et al., 2006)
mPC: 2009 (Shin, et al., 2007) 0.08 (Abdel-Rahman and Hefzy,
IPC: 2176 (Shin, et al., 2007) 1998)
oPC: 1352 (Shin, et al., 2007) 10oblPC: 0.05 (Amiri, et al., 2006)
aPC: 1293 (Shin, et al., 2007) 20bIPC: 0.042 (Amiri, et al., 2006)

oblPopPC: 0.08 (Abdel-Rahman and
Hefzy, 1998)

acrPopPC: 0.07 (Abdel-Rahman and
Hefzy, 1998)

mPC: 0.02 (Shin, et al., 2007)

IPC: 0.02 (Shin, et al., 2007)

oPC: 0.02 (Shin, et al., 2007)

aPC: 0.02 (Shin, et al., 2007)
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Table 13: Review of ligament lengths at extension and slack lengths from ex vivo and in vivo studies

Ligament Slack Length (mm) Length at Extension (mm)
Patellar 44.5 —57.8 ex vivo (Butler, et al., 45 — 52 ex vivo (Van Eijden, et al., 1987)
tendon 1986)
41.5 in vivo (Hansen, et al., 2006)
42.8 — 48.8 in vivo (Sheehan and
Drace, 2000)
ACL 25.4 - 31.7 ex vivo (Butler, et al., 32.5 +- 2.8 for amACL in vivo (Li, et al., 2004)
1986) 27.6 +- 5.2 for plACL in vivo (Li, et al., 2004)
22.15 - 36.5 ex vivo (Hashemi, et al.,
2005)
PCL 29.5 — 32 ex vivo (Butler, et al., 1986) 25 — 31 for alPCL ex vivo (Ahmad, et al., 2003)
27.8 +- 2.1 for alPCL in vivo (Li, et al., 2004)
32 — 46 for pmPCL ex vivo (Ahmad, et al.,
2003)
28.8 +- 1.9 for pmPCL in vivo (Li, et al., 2004)
LCL 48.7 — 50.9 ex vivo (Butler, et al., 59 — 74 ex vivo (Meister, et al., 2000)
1986) 46.5 - 61 in vivo (Park, et al., 2005)
51.5 — 64 ex vivo (Sugita and Amis, 2001)
PFL - 42.6 +- 7.3 ex vivo (Sugita and Amis, 2001)
MCL - 61 — 94 in superficial layer in vivo (Park, et al.,
2005)
80— 112 in middle layer ex vivo (Robinson, et
al., 2004)
29 — 33 in deep layer ex vivo (Robinson, et al.,
2004)
21 -38in deep layer in vivo (Park, et al.,
2005)
lliotibial Band 490 — 540 ex vivo (Birnbaum, et al.,

2004)
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Young’s Cross Sectional Specimen Derived Stiffness  Specimen Derived Source
Modulus (MPa)  Area of (fascicle, Stiffness (N/mm) Length Stiffness
Specimen (mmz) bone- (modulus * (mm) (stiffness
ligament- area), (N) N/mm *
bone, etc.) length mm),
(N)
1.09e3 +- 0.12 163 +- 12 In vivo 177670 4334 +- 41.5+-0.9 179861 (Hansen,
1.09e3 +- 0.10 177670 562 (slack 177329.5 etal.,
0.91e3 +- 0.07 148330 4273 +- length) 154587.5 2006)
0.99e3 +- 0.07 161370 588 174092.5
3725 +-
293
4195 +-
369
363.3+-93.7(200 36.8+ 5.7 Bone- 13369.44 - - - (Staubli, et
N, (unconditioned) ligament-bone al., 1999)
unconditioned) complex 16902.24
459.3 +- 83.2 (800
N, 345+-4.4 19523.55
unconditioned) (preconditioned)
565.9 +- 159.1 28003.65
(200 N,
preconditioned)
811.7 +- 154.1
(800 N,
preconditioned)
660 +- 266 14.6 +-0.3 Central third 9636 - - - (Johnson,
(younger group) of bone- etal.,
504 +- 222 (older 14.8 +- 0.2 ligament-bone 7459 1994)
group) complex
307 +- 17 76 Bone- 23332 - - - (Haut and
ligament-bone Powlison,
complex 1990)
643 +- 53 1.20+- 0.3 Fascicles 771.6/fascicle * 5 - 445+ 1.1 - (Butler, et
1.86 +-0.3 fascicles = 3858 57.8+ 1.4 al., 1986)
1.65+-0.2 1195.98/fascicle * 55.6 +- 2.4
8 fascicles =
9567.84
1060.95/fascicle *
6 fascicles =
6365.7
305.5 +- 59.0 50.5 +- 2.8 Central or 15427.75 (central) - 48.7 +- 3.8 - (Butler, et
(central) (central) medial third of  18010.89 (medial) (central) al., 1984)
361.1+-34.4 49.9 +- 3.8 bone- 48.8 +- 2.8
(medial) (medial) ligament-bone (medial)
complex
- 50.5 +- 2.8 Bone- - 685.2 +- 48.7 +- 3.8 33369.24 (Noyes, et
(central) ligament-bone 85.6 (central) al., 1984)
49.9 +-3.8 complex (central) 48.8 +-2.8 31749.28
(medial) (divided into 3 650.6 +- (medial)
portions) 85.4

(medial)




Table 15: Review of ACL stiffness values derived from experimentally measured values

88

Young's Cross Specimen Derived Stiffness  Specimen Derived Source
Modulus Sectional (fascicle, Stiffness (N/mm) Length Stiffness
(MPa) Area of bone- (modulus * (mm) (stiffness
Specimen ligament- area), (N) N/mm *
(mm?) bone, etc.) length mm),
(N)
128 +- 35 72.91 +- 18.90 Bone-ligament- 9332.48 308 +- 89 29.61+-2.70 9119.88 (Chandrashekar,
(male) bone complex 27.04 +- 2.90 et al., 2006)
99 +- 50 57.32 +-15.70 5674.68 199 +- 88 5381.96
(female)
- - Bone-ligament- - 167 - 205 *27 4509 - 5535 (Jones, et al.,
bone complex 1995)
283.1 +- 292+ 1.61 Bundles 1949.21 - 32.5+-4.7 - (Butler, et al.,
114.4 1.91+-1.02 28.6 +- 5.1 1992)
285.9 +- 4.57 +-3.84 24.6 +-4.5
140.6
154.9 +-
119.5
- - Bone-ligament- - 242 +-28 *27 6534 (Woo, et al.,
bone complex (young) 1991)
220 +- 24 5940
(middle)
180 +- 25 4860
(older)
275 1.29 +-0.13 Fascicles (3) 1064.25 - 25.4 +- 3.7 - (Butler, et al.,
350 1.17 +- 0.39 1228.5 317+ 24 1986)
325 1.91 +-0.09 1862.25 29.1+-3.1
- 444 +- 4.0 ?”? - 182 +- 33 269+ 1.1 4895.8 (Noyes, et al.,
1984)
- - Bone end- - 81 +-36 26 +-5 2106 (Marinozzi, et al.,
ligament-bone 1983)
end
65.3 +- 24 57.5+-16.2 ?? 3754.75 129 +- 39 27.5+- 2.8 3547.5 (Noyes and
(older) Grood, 1976)
111 +- 26 44.4 +- 9.7 4928.4 182 +- 56 269+ 1.5 4895.8
(younger)
- - Bone-ligament- - 138.2 *27 3731.4 (Trent, et al.,
bone complex 1976)
*Average ACL length used ~27 mm (Noyes, et al., 1984)
Table 16: Review of PCL stiffness values derived from experimentally measured values
Young’s Cross Specimen Derived Stiffness Specimen Derived Source
Modulus Sectional Area (fascicle, bone-  Stiffness (N/mm) Length Stiffness
(MPa) of Specimen ligament-bone, (modulus * (mm) (stiffness
(mm?) etc.) area), (N) N/mm * length
mm), (N)
248 +- 119 43.0+-11.3 Bone-ligament- 10664 347 +- 140 353+-34 12249.1 (Race and
(aPCL) bone complex Amis, 1994)
145 +- 69 10.0+ 1.3 1450 77 +- 32 33.8+-3.2 2602.6
(pPCL)
375 1.91 +-0.24 Fascicles (3) 2148.75 - 32.0+-4.5 - (Butler, et
450 1.12 +- 0.45 Fascicles (2) 1008 31.4+-0.3 al., 1986)
280 2.40 +-0.24 Fascicles (3) 2016 29.5+-2.7
- - Bone end- - 145 +- 66 25 +-4 3625 (Marinozzi,
ligament-bone etal., 1983)
end
- - Bone-ligament- - 179.5 *31 5564.5 (Trent, et al.,
bone complex 1976)

*Average PCL length used ~31 mm.



Table 17: Review of LCL and PFL stiffness values derived from experimentally measured values
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Young's Cross Specimen Derived Stiffness Specimen Derived Source
Modulus Sectional Area  (fascicle, bone-  Stiffness (N/mm) Length Stiffness
(MPa) of Specimen ligament-bone, (modulus * (mm) (stiffness
(mmz) etc.) area), (N) N/mm * length
mm), (N)
- - Bone-ligament- - 58.1 +- 59.2 +-4.3 3439.52 (Sugita and
bone complex 22.8 (LCL) Amis, 2001)
43.6 +- 426+ 7.3 1857.36
14.8 (PFL)
430 1.54 +-0.21 Fascicles (2) 1324.4 - 509+ 2.4 - (Butler, et
370 2.98 +- 0.07 2205.2 52.9+- 1.9 al., 1986)
360 3.73 +-0.23 2686.6 48.7 +- 0.6
- - Bone end- - 60 +- 22 56 +- 10 3360 (Marinozzi,
ligament-bone (LCL) etal., 1983)
end
- - Bone-ligament- - 59.8 (LCL) *50 2990 (Trent, et al.,
bone complex 1976)
*Average LCL length used ~50 mm.
Table 18: Review of MCL stiffness values derived from experimentally measured values
Young’s Cross Specimen Derived Stiffness Specimen Derived Source
Modulus Sectional Area  (fascicle, bone-  Stiffness (N/mm) Length Stiffness
(MPa) of Specimen ligament-bone, (modulus * (mm) (stiffness
(mmz) etc.) area), (N) N/mm * length
mm), (N)
332.2 +- 2.7475 Dog bone shaped  912.7 - 15.07 +-2.46 - (Quapp and
58.3 specimens Weiss, 1998)
- - Bone end- - 60 +- 22 104 +- 4 6240 (Marinozzi,
ligament-bone etal., 1983)
end
- - Bone-ligament- - 70.6 *100 7060 (Trent, et al.,

bone complex

1976)

*Average MCL length used ~100 mm.

Table 19: Review of lliotibial band stiffness values derived from experimentally measured values

Young's Cross Specimen Derived Stiffness Specimen Derived Source
Modulus Sectional Area  (fascicle, bone-  Stiffness (N/mm) Length Stiffness
(MPa) of Specimen ligament-bone, (modulus * (mm) (stiffness
(mm?) etc.) area), (N) N/mm * length
mm), (N)
564.7 +- 8.46 Tissue sample 4777.36 - - - (Steinke, et
193.8 al., 2012)
- - Entire tissue - 17 510 8670 (Birnbaum,

et al., 2004)
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Appendix B: Lower Extremity Model

Introduction
A model of the lower extremity was used within forward dynamic simulations to compute
simulated kinematics resulting from muscle excitations (Figure 52).

musculotendon lengths
and velocities

|

muscle muscle Musculoskeletal |  skeletal
excitations Activation | activations Contraction forces Geometry + motion
Dynamics Dynamics Equations of
Motion
Figure 52: Schematic of a forward dynamic simulation. Figure adapted from (Pandy, 2001).
Anthropometry

A generic model of the lower extremity was created using the SIMM Dynamics Pipeline
(MusculoGraphics, Evanston, IL, USA). The geometry included rigid models of the pelvis, femur, tibia,
fibula, patella, talus, calcaneus, metatarsals, and phalanges digitized from a male cadaver, dimensions of
which were consistent with a 170 cm tall male (Arnold, et al., 2010; Gordon, 1989) and mass properties

of a 75 kg male (Table 20) (de Leva, 1996a).
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Table 20: Inertia properties of body segments

Segment Mass (kg) Moment of Inertia
about segment center
of mass (kg*m?)

Pelvis 8.38 Ixx = 0.0540
lyy = 0.0613
Izz = 0.0673

Femur 10.1 Ixx =0.172
lyy = 0.0353
lzz=0.172

Tibia 3.25 Ixx =0.030
lyy =0.00516
lzz=0.0312

Patella 0.488 Ixx = 0.0001
lyy = 0.0001
Izz =0.0001

Talus 0.045 Ixx = 0.000003
lyy = 0.000001
Izz = 0.000003

Calcaneus 1.24 Ixx = 0.00127
lyy = 0.00323
Izz =0.00374

Toes (metatarsals 0.198 Ixx = 0.000202

and phalanges) lyy = 0.000517
Izz = 0.000595

Bone embedded reference frames (Figure 53) were adapted from (Arnold, et al., 2010). Each
coordinate system was oriented so that in anatomical position, x-axis pointed anteriorly, y-axis
superiorly, and the z-axis to the right. These were also aligned with the inertial axes of each bone. The
origin of the pelvis frame was positioned at the midpoint of a line connecting the left and right anterior
superior iliac spines (ASIS). The ASIS and pubic tubercles formed the yz plane. The femur origin was
placed at the center of the femoral head. The y-axis was placed along a line connecting the femoral head
and the center of the femoral condyles. The patella origin was located at the proximal pole of the
patella. The tibia origin was placed at the midpoint of the femoral condyles with the knee in full

extension. The talus origin was positioned at the midpoint of a line between the apices of the medial
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and lateral malleoli. The toe origin was located at the distal end of the second metatarsal. The calcaneus

origin was positioned on the most inferior, lateral point on the posterior surface of the calcaneus.

Figure 53: Bone embedded frames of the lower extremity model, adapted from (Arnold, et al., 2010).
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The segments were connected via joints using the definitions of SD/Fast (Symbolic Dynamics,

Mountainview CA, USA). The generalized coordinates of each joint described the motion of the ‘body’

with respect to the ‘inboard body’ (Figure 54). For example, knee motion was described as the motion of

the tibia relative to the femur. The joint location was placed at segment origins and defined relative to

the segment’s center of mass (Figure 54 and Table 21).

Inboard Body

Position of Inboard
Body to Joint

-

{Position of Body to
| Joint

Figure 54: Joint location at the segment origin was defined relative to each segment’s center of mass when the segment axes

were aligned.

Table 21: Joint parameters

Joint Body Inboard Body Body to Joint Inboard Body to Joint
Pelvis/ground Pelvis Ground (0.0893, 0.0258, 0) (0,0,0)

Hip Femur Pelvis (0,0.162, 0) (0.0330, -0.0527, 0.0773)
Tibiofemoral Tibia Femur (0,0.172, 0) (0, 0.162, 0)
Patellofemoral Patella Femur (0,0,0) (0, 0.162, 0)

Ankle Talus Tibia (-0.0055, -0.0023, 0) (-0.01, -0.228, 0)

Subtalar Calcaneus Talus (-0.102, -0.0156, 0) (-0.0543, -0.0443, 0.00792)
Metatarsophalangeal Toes Calcaneus (-0.0307, 0.0026, -0.0105)  (0.0769, 0.0176, 0.00108)
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The pelvis was connected to the ground with a bushing joint, which consisted of three
translational and three rotational (body fixed 3-1-2 rotation) degrees of freedom. The hip was modeled
as a gimbal joint (i.e. ball and socket joint) with three rotational (body fixed 3-1-2 rotation) degrees of
freedom. The knee was represented with a six degree of freedom tibiofemoral joint and a
patellofemoral joint that was defined as a planar joint with two translational and one rotational degree
of freedom (Chapter 3). The ankle joint was modeled as a pin joint, one rotational degree of freedom,
about a vector defined as -0.105x - 0.174y + 0.979z in the tibial reference frame. The subtalar joint was
also defined as a pin joint about a vector 0.787x + 0.605y - 0.121z defined in the talus frame and the
metatarsophalangeal a pin joint about a vector 0.581x - 0.814z defined in the calcaneal frame. The

orientation of the rotation axes for the ankle complex was based on (Delp, 1990; Inman, 1976).
Muscles

Adapted from (Arnold, et al., 2010), the model included 44 muscles of the right lower limb,
where the musculotendon path from origin to insertion was approximated as line segments for each
muscle (Figure 53). Wrapping surfaces were included to avoid penetration with bones and deeper soft

tissues (Table 22 through Table 24).
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Table 22: Wrapping objects located in the pelvis

Wrapping Object

Geometry

Orientation and Location in Bone
Reference Frame

lliacus

Glueteus maximus
superior, middle, and
inferior

Ellipsoid with radius
(0.0549, 0.0665,
0.071)

Ellipsoid with radius
(0.04, 0.04, 0.06)

Translated (-0.0685, -0.0557, 0.0756)
in pelvis

XYZ body rotated by (-36.5, 21.98, -
39.24) and translated (-0.0795, -
0.0825, 0.0665) in pelvis
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Table 23: Wrapping objects located in the femur

Wrapping Object Geometry Orientation and Location in
Bone Reference Frame
Pectineus Ellipsoid with XYZ body rotated by (6.4, O,
radius (0.0166, 12.1) and translated (0.00762, -
0.05, 0.0131) 0.0853, 0.0290)
Vastii (intermedius, Cylinder with XYZ body rotated by (-3.572,
lateralis, medialis) and radius 0.025 2.908, -51.138) and translated

rectus femoris

Gastrocnemius lateral Ellipsoid with
and medial head radius (0.03,
0.025, 0.15)

(0.00359, -0.403, 0.00209) in
femur

XYZ body rotated by (3.38, -5,
1.33) and translated (0.01, -
0.408, 0.0003) in femur

Table 24: Wrapping objects located in the tibia

Wrapping Object Geometry

Orientation and Location in
Bone Reference Frame

Gracilis Ellipsoid with radius
(0.036, 0.0635, 0.0533)

Semimembranosus Ellipsoid with radius
(0.0352, 0.0602, 0.0489)

Semitendinosus Ellipsoid with radius
(0.0425, 0.069, 0.0572)

XYZ body rotated by (0, 0, -10.5)
and translated (0, 0, 0)

XYZ body rotated by (0, 0, -17)
and translated (0, 0, 0)

XYZ body rotated by (0, 0, -15.5)
and translated (0, 0, 0)
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The muscles were modeled using a lumped-parameter model (Figure 55) where the distributed
properties of all the fibers in a muscle are lumped into a single ideal fiber (Zajac, 1989). The tendon was
modeled as a nonlinear spring in series with a contractile element and passive spring component. This
lumped-parameter model assumed that all fibers were the same length, same pennation angle, etc. and

muscle strength was the summed strength of the individual fibers.

length of musculotendon

A

length of tendon

f

i force in musculotendon

Tendon: Nonlinear spring

(XXXXK)
fmt (lilllililllll’

o ¢
\4‘0"‘{\3“‘\
pennation @@
angle

Figure 55: Hill lumped-parameter model of muscle.

Muscle dynamics were composed of two parts: the activation dynamics and contraction
dynamics (Thelen, 2003). The activation dynamics were governed by a non-linear first-order differential

equation (Eq 9) where the motor unit excitation, u, was the input for each of the muscles.

u-a

a= Eq9
1,(a,u)
In Eq 9, a is the muscle activation and T, a time constant defined by Eq 10.
T.«(0.5+1.5a); u>a Eq 10
=] 1
Ty (a,u) deact ; u<a
0.5+1.5a

where T, is the activation time constant and tye,: the deactivation time constant. The activation and

deactivation time constants were set at 0.015 and 0.05 sec, respectively. The motor unit excitation and
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muscle activation were constrained between 0 and 1, inclusive. Time constants are needed because a
muscle cannot generate force or relax immediately. To generate force, the excitation of motor units
induces action potentials in the muscle fibers and causes the release of calcium ions into the muscle
cells. These ions initiate cross bridge formation, the force producing mechanism of the muscle (Guyton,
1986). The muscle relaxes with the reuptake of the calcium ions.

The passive force-length properties of muscles were described using an exponential equation

(Eq 11).

7 ekPE(M-1) /el 1 Eq 11

ek™-1
where FPE is the force in the passive element normalized by maximum isometric force, k™ is a shape
factor, 83’[ is the passive muscle strain at the maximum isometric force, and IM the muscle fiber length
normalized by the optimal fiber length. The passive muscle strain at maximum isometric force, 534, was
set to 0.6 for all muscles except for the rectus femoris and vastii, which were set at 1.0. The shape
factor, k™, was 4.0 for all muscles but 10.0 for the vastii.

The force in the contractile element of the muscle was related to muscle fiber length by Eq 12.

f:e'(L_M'l)z/y Eq 12

where f is a scale factor and y a shape factor. The shape factor was set at 0.35 for all muscles.
The force generating property of the tendon was represented by a non-linear toe region,

followed by a linear force-strain relationship (Eq 13).

FT_ kaesT Eq 13
toe € _ . T T
i ) S & =Eioe
T_oT T . T T
klin(S 'stoe)+ l:toe' € >Etoe

where FT is the force in the tendon normalized by maximum isometric force, Kk, a shape factor (set at

2.0), FX, normalized force at which the curve reaches the toe strain g, ki, a scale factor, and €'

tendon strain. The transition from the toe to linear region was set at a normalized tendon force 0.33.
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The strain at which the tendon reached maximum isometric force, sg, was 0.05. To avoid discontinuities

at the transition, ef,=0.609¢] and k;,=1.712/¢].
Contraction dynamics of the musculotendon unit, which incorporates the interaction of the
contractile-passive element with the tendon, was represented by Eq 14.

FM.af Eq 14
VM=(0.25+0.75a)vr1rV1'axT

Where VM is the muscle fiber velocity, VMaX is the maximum contraction velocity (set at 10.0), FM the

active muscle force normalized by maximum isometric force, and b computed using Eq 15.

™ o Eq 15
f+—; FM<af
a A, a
b= 2 iyl vd
@+ ) @F P
L — ; FM>af
FM -1

where % is the maximum normalized muscle force possible when the fiber is lengthening (set to 1.5)
and A is a shape factor (set to 0.3).

Muscle specific parameters were adapted from (Arnold, et al., 2010) (Table 25).

Table 25: Muscle properties

Muscle Maximum Optimal fiber Tendonslack Pennation Locations of attachments in
Isometric Muscle length (cm) length (cm) angle (deg) segment reference frames
Force (N) (m)
Adductor brevis 607.4 10.3 3.6 6.1 (-0.0191, -0.094, 0.0154)
pelvis
(-0.002, -0.118, 0.0249)
femur
Adductor longus 799.4 10.8 13.0 7.1 (-0.00758, -0.0889, 0.0189)
pelvis
(0.0113,-0.239, 0.0158)
femur
Adductor magnus 648.4 17.7 9.0 13.8 (-0.0740, -0.128, 0.0398)
distal pelvis
(0.0113,-0.263, 0.0193)
femur
Adductor magnus 648.4 15.6 22.1 11.9 (-0.0896, -0.130, 0.0417)
ischial pelvis

(0.00481, -0.388, -0.0327)
femur
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Muscle Maximum Optimal fiber Tendonslack Pennation Locations of attachments in
Isometric Muscle length (cm) length (cm) angle (deg) segment reference frames
Force (N) (m)
Adductor magnus 648.4 13.8 4.8 14.7 (-0.0527, -0.121, 0.0285)
middle pelvis
(0.00242, -0.162, 0.0292)
femur
Adductor magnus 648.4 10.6 4.3 22.2 (-0.0310, -0.108, 0.0137)
proximal pelvis
(-0.0153, -0.0789, 0.0320)
femur
Biceps femoris long 1410.4 9.8 32.2 11.6 (-0.104, -0.119, 0.0586)
head pelvis
(-0.0317, -0.0425, 0.0333)
tibia
Biceps femoris short 631.6 11.0 10.4 12.3 (0.005, -0.211, 0.0234)
head femur
(-0.0301, -0.0419, 0.0318)
tibia
Extensor digitorum 690.8 6.9 36.7 10.8 (-0.016, -0.116, 0.0205) tibia
longus (0.0164, -0.376, 0.0112)
tibia
(0.0919, 0.036, 0.0008)
calcaneus
(0.162, 0.0055, 0.013)
calcaneus
(0.0003, 0.0047, 0.0153)
toes
(0.0443, -0.0004, 0.025)
toes
Extensor hallucis 330.0 7.5 33.2 9.4 (-0.014, -0.155, 0.0189) tibia
longus (0.007, -0.291, 0.0164) tibia
(0.02, -0.369, -0.0028) tibia
(0.097, 0.0389, -0.0211)
calcaneus
(0.173, 0.0139, -0.028)
calcaneus
(0.0298, 0.0041, -0.0245)
toes
(0.0563, 0.0034, -0.0186)
toes
Flexor digitorum 548.8 4.5 37.8 13.6 (-0.0023, -0.183, -0.0018)

longus

tibia

(-0.0176, -0.365, -0.0124)
tibia

(0.0436, 0.0315, -0.028)
calcaneus

(0.166, -0.0081, 0.0116)
calcaneus

(-0.0019, -0.0078, 0.0215)
toes

(0.0441, -0.006, 0.0242)
toes
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Muscle Maximum Optimal fiber Tendonslack Pennation Locations of attachments in
Isometric Muscle length (cm) length (cm) angle (deg) segment reference frames
Force (N) (m)

Flexor hallucis longus  873.6 5.3 35.6 16.9 (-0.031, -0.216, 0.02) tibia
(-0.0242, -0.367, -0.0076)
tibia
(0.0374, 0.0276, -0.0241)
calcaneus
(0.104, 0.0068, -0.0256)
calcaneus
(0.173, -0.0053, -0.0269)
calcaneus
(0.0155, -0.0064, -0.0265)
toes
(0.0562, -0.0102, -0.0181)
toes

Gastrocnemius lateral 1212.8 5.9 36.9 12.0 (-0.003, -0.381, 0.0277)

head femur
(0.0044, 0.031, -0.0053)
calcaneus

Gastrocnemius 2616.0 5.1 38.9 9.9 (0.008, -0.379, -0.0208)

medial head femur
(0.0044, 0.031, -0.0053)
calcaneus

Gemelli 218.0 2.4 2.8 0.0 (-0.104, -0.0764, 0.0671)
pelvis
(-0.0142, -0.0033, 0.0443)
femur

Gluteus maximus 1092.2 14.7 5.0 219 (-0.123, 0.0345, 0.0563)

superior pelvis
(-0.126, -0.0242, 0.0779)
pelvis
(-0.0444, -0.0326, 0.0302)
femur
(-0.0277, -0.0566, 0.047)
femur

Gluteus maximus 1561.0 15.7 7.3 21.9 (-0.132, 0.0087, 0.0462)

middle pelvis
(-0.134, -0.0609, 0.0813)
pelvis
(-0.045, -0.0584, 0.0252)
femur
(-0.0156, -0.102, 0.0419)
femur

Gluteus maximus 1052.2 16.7 7.0 21.9 (-0.13, -0.0525, 0.009) pelvis

inferior (-0.127,-0.126, 0.0435)
pelvis
(-0.0281, -0.113, 0.0094)
femur
(-0.006, -0.142, 0.0411)
femur

Gluteus medius 1762.2 7.3 5.7 20.5 (-0.0445, 0.0245, 0.117)

anterior

pelvis
(-0.0218, -0.0117, 0.0555)
femur
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Muscle Maximum Optimal fiber Tendonslack Pennation Locations of attachments in
Isometric Muscle length (cm) length (cm) angle (deg) segment reference frames
Force (N) (m)
Gluteus medius 1233.0 7.3 6.6 20.5 (-0.085, 0.0316, 0.0675)
middle pelvis
(-0.0258, -0.0058, 0.0527)
femur
Gluteus medius 1404 7.3 4.6 20.5 (-0.115, -0.0073, 0.0526)
posterior pelvis
(-0.0309, -0.0047, 0.0518)
femur
Gluteus minimus 360.0 6.8 1.6 10.0 (-0.0464, -0.0149, 0.104)
anterior pelvis
(-0.0072, -0.0104, 0.056)
femur
Gluteus minimus 380.0 5.6 2.6 0.0 (-0.0616, -0.0142, 0.0971)
middle pelvis
(-0.0096, -0.0104, 0.056)
femur
Gluteus minimus 430.0 3.8 5.1 1.0 (-0.0789, -0.0155, 0.0798)
posterior pelvis
(-0.0135, -0.0083, 0.055)
femur
Gracilis 274.6 22.8 16.9 8.2 (-0.0474, -0.129, 0.0246)
pelvis
(-0.0184, -0.0475, -0.0296)
tibia
(0.00178, -0.0696, -0.0157)
tibia
lliacus 1243.8 10.7 9.4 14.3 (-0.0605, 0.0309, 0.0843)
pelvis
(-0.0135, -0.0557, 0.0756)
pelvis
(-0.0023, -0.0565, 0.0139)
femur
(-0.0122, -0.0636, 0.0196)
femur
Pectineus 354 10.0 3.3 0.0 (-0.0232, -0.0833, 0.0453)
pelvis
(-0.00797, -0.0852, 0.0240)
femur
Peroneus brevis 611.8 4.5 14.8 11.5 (-0.0243, -0.253, 0.0251)

tibia

(-0.0339, -0.389, 0.0249)
tibia

(-0.0285, -0.400, 0.0255)
tibia

(0.0471, 0.027, 0.0233)
calcaneus
(0.0677,0.0219, 0.0343)
calcaneus
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Muscle Maximum Optimal fiber Tendonslack Pennation Locations of attachments in
Isometric Muscle length (cm) length (cm) angle (deg) segment reference frames
Force (N) (m)

Peroneus longus 1306.6 5.1 33.3 14.1 (-0.02, -0.137, 0.0282) tibia
(-0.0317, -0.39, 0.0237) tibia
(-0.0272, -0.401, 0.024) tibia
(0.0438, 0.023, 0.0221)
calcaneus
(0.0681, 0.0106, 0.0284)
calcaneus
(0.0852, 0.0069, 0.0118)
calcaneus
(0.120, 0.0085, -0.0184)
calcaneus

Peroneus tertius 180.0 7.9 10.0 13.0 (-0.0149, -0.249, 0.0222)
tibia
(0.0108, -0.382, 0.0225)
tibia
(0.0857, 0.0228, 0.0299)
calcaneus

Piriformis 592.0 2.6 11.5 10.0 (-0.102, -0.00653, 0.0135)
pelvis
(-0.102, -0.0307, 0.0609)
pelvis
(-0.0148, -0.0036, 0.0437)
femur

Psoas 959.4 11.7 9.7 10.7 (-0.0606, 0.0619, 0.039)
pelvis
(-0.0205, -0.0654, 0.0656)
pelvis
(-0.0132, -0.0467, 0.0046)
femur
(-0.0235, -0.0524, 0.0088)
femur

Quadratus femoris 508.0 5.4 2.4 0.0 (-0.112,-0.115, 0.0517)
pelvis
(-0.0358, -0.0355, 0.0361)
femur

Rectus femoris 1697.6 7.6 34.6 13.9 (-0.024, -0.0388, 0.0933)
pelvis
(0.01, -0.0035, 0.0007)
patella
(0.0121, -0.0088, -0.001)
patella

Sartorius 227 40.3 11.0 1.3 (-0.0195, -0.0156, 0.106)
pelvis
(-0.003, -0.357, -0.0421)
femur
(-0.0251, -0.0401, -0.0365)
tibia
(-0.0159, -0.0599, -0.0264)
tibia
(0.0136, -0.081, -0.0026)
tibia

Semimembranosus 2325.4 6.9 37.8 15.1 (-0.0987, -0.114, 0.0614)

pelvis
(-0.029, -0.0417, -0.0196)
tibia
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Muscle Maximum Optimal fiber Tendonslack Pennation Locations of attachments in
Isometric Muscle length (cm) length (cm) angle (deg) segment reference frames
Force (N) (m)

Semitendinosus 603.8 19.3 24.5 12.9 (-0.104, -0.125, 0.0515)
pelvis
(-0.0312, -0.0598, -0.0229)
tibia
(0.0019, -0.0773, -0.0117)
tibia

Soleus 7171.8 4.4 28.2 28.3 (-0.0076, -0.0916, 0.0098)
tibia
(0.0044, 0.031, -0.0053)
calcaneus

Tensor fascia latae 310.0 9.5 45.0 3.0 (-0.0311, 0.0214, 0.124)
pelvis
(0.0294, -0.0995, 0.0597)
femur
(0.0108, -0.041, 0.0346)
tibia

Tibialis anterior 1347.4 6.8 24.1 9.6 (0.0154, -0.131, 0.0162)
tibia
(0.0251,-0.191, 0.0128)
tibia
(0.0233, -0.366, -0.0132)
tibia
(0.117, 0.0178, -0.0305)
calcaneus

Tibialis posterior 1811.2 3.8 28.2 13.7 (-0.0041, -0.130, 0.0103)
tibia
(-0.0164, -0.366, -0.0175)
tibia
(0.0417, 0.0334, -0.0286)
calcaneus
(0.0772, 0.0159, -0.0281)
calcaneus

Vastus intermedius 2048.4 9.9 10.6 4.5 (0.029, -0.192, 0.031) femur
(0.0335, -0.208, 0.0285)
femur
(0.0058, -0.0045, -0.0006)
patella

Vastus lateralis 4510.8 9.9 13 18.4 (0.0048, -0.185, 0.0349)
femur
(0.0269, -0.259, 0.0409)
femur
(0.0103, -0.0102, 0.0141)
patella

Vastus medialis 2887.4 9.7 11.2 29.6 (0.014, -0.210, 0.0188)

femur
(0.0356, -0.277, 0.0009)
femur
(0.0063, -0.008, -0.017)
patella
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Appendix C: Computed Muscle Control

Musculoskeletal Dynamics

The equations of motion for a system of bodies can be written as a second-order equation that

involve matrices and vectors (Eq 16) (Thelen, Anderson et al. 2003; Erdemir, McLean et al. 2007):

a=M(@ [G(@) + C(q,a) + R(@*Tme + E(G,)] Fate
where a are generalized accelerations, a generalized velocities, , q generalized coordinates, M the mass
matrix, ageneralized forces from gravity, C generalized forces due to Coriolis and centripetal effects, R
muscle moment arms, fmt musculotendon forces, and E generalized forces from the external
environment (e.g. force of the ground on the feet).

CMC Basics

Computed muscle control (CMC) is an algorithm used to calculate a set of muscle excitation
waveforms that will drive a musculoskeletal model to track a set of experimental kinematics. The

algorithm consists of three general steps (Figure 56).

PD Controller
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Figure 56: Schematic of computed muscle control adapted from (Thelen and Anderson, 2006b).
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First, a controller is used to compute the desired accelerations needed to drive the model

coordinates toward the given experimental coordinates. At time t in the simulation, the current
simulated segment positions (q) and velocities (ﬁ) are used in conjunction with the experimental
segment positions (Qey,), Velocities (6exp), and accelerations (aexp) to calculate desired segment
accelerations (a*) that should be achieved a short amount of time later, t + T, to track the desired

experimental motion (Eq 17), where EV and Ep are feedback gains.

G ()= Gy (BT K, [Gp (0 GO+ Ky G, O-GO] v

Second, static optimization is used to compute actuator controls (e.g. muscle excitations), x in Figure 56,
that will achieve the desired accelerations. Since there is muscle redundancy, there is not a unique set of
controls that produces the desired accelerations. Thus, an optimization algorithm is implemented to find
a set of muscle excitations that minimizes the sum of volume weighted squared activations (Thelen and
Anderson, 2006b). The optimization is referred to as static because the cost function is based on
measures that are evaluated at every instant in time. An example of a non-static measure would be
maximum jump height found from evaluating kinematics measured over a finite time period. Third, a
forward dynamics model is used to integrate forward in time to calculate the new model states. During

the optimization step, CMC calculates the capacity of each muscle to accelerate the segments.
Acceleration Capacity of Muscles

CMC was developed based on musculoskeletal models with kinematic joints. In such cases, the
capacity of a muscle to induce accelerations can be directly computed at an instant in time by solving
the whole body equations of motion (Eq 16).

This is no longer true when using a knee joint model with ligamentous constrains and cartilage
contact loading. In our case, we use a discrete element cartilage contact model which determines

contact loads based on the degree of overlap between cartilage surfaces (Anderson, et al., 2010c;
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Blankevoort and Huiskes, 1991; Blankevoort, et al., 1991b; Caruntu and Hefzy, 2004; Kim, 1996; Pandy,
et al.,, 1997; Shelburne, et al., 2004). The ligaments are described by nonlinear springs which must
change length before loading changes. Hence, a change in kinematics is needed before the joint
cartilage or ligament loads will change. For example, a change in vastii force will not affect patellar
tendon loading instantaneously, since the ligament must first change length. For example, in the knee, a
change in vastii force will instantly accelerate the patella. If there is a kinematic constraint between the
patella and tibia, the tibia will also instantly accelerate. In a non-kinematic joint, the patellar tendon
must stretch before inducing acceleration of the tibia. Therefore, the CMC algorithm for computing the
acceleration capacity of muscles was modified by temporarily imposing kinematic constraints for the

non-kinematic knee model.
Example

Consider an example of a pendulum attached to a pivot by a spring and damper, where the
spring and damper are also attached by a pivot to the mass (Figure 57). Computed muscle control can be
used to calculate the required torque, T, and secondary kinematics (translations in the x and y direction)

for a prescribed angle, 6.

H . Only ‘tracking’ this
Given: @(t) degree of freedom AE +F
|I spring damper _
*F=ma
Find:T(t) ,Y0) F.+F;+W=ma
x(t) ST.= la
\/(t) [rx(F,+Fy))lk +T=1,8

Figure 57: (left) Schematic of problem. (right) Free body diagram.

b [rx (FAF )]k +T
=

z
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For every time in the simulation, the controller law (Eq 17) was used to compute the desired
accelerations needed to drive the model coordinates to the given experimental coordinates (step 1 of
CMC). Note this was only done for 6 (i.e. g = 8 in Eq 17), since this was the only degree of freedom being
tracked. The torque needed to bring the current model 6 back to the experimental 6 was calculated
(Figure 58). The time to bring the model back to the experimental configuration depends on the values
used for the feedback gains. This is where optimization would be used if there were more than one
actuator (step 2 of CMC). Then the torque was applied to the pendulum and the equations of motion

integrated forward a small amount of time to get to a new configuration (step 3 of CMC).

Equations Bevp

T=0 of motion
.- The acceleration this
. rx (F+F,) |-k +T e
0= Ir x (F : )] W actuator induces
: under 1 Nm of torque.
T=1Nm Equations i}

of motion 3]

o) - ) - If this actuator isn’t used, how far off
T= des _ BVP |« would the accelerations be from the
desired values?

This equation assumes that only this actuator will
be used at this instant in time. If other
muscles/actuators are also to be used,
optimizationis needed to reduce redundancy (i.e.
number of unknowns > number of equations so

. optimization increases the number of equations).

Torque needed to bring the current
accelerations to the desired values.

Figure 58: Calculating the required torque, T, to drive the pendulum to the prescribed motion.
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